ZUR THEORIE NICHTLINEARER SPINORFELDER

1. die direkte Anregung durch Stofl zwischen im
elektrischen Feld beschleunigten ,heiflen“ Elek-
tronen und Mn2*-Zentren,

2. die Ubertragung der beim Ubergang von Elek-
tronen zwischen Storstellen und Béndern frei-
werdenden Energie durch Resonanz an Mn27-
Zentren,

3. die Reabsorption der Emission von Cu-Zentren
in Mn2"-Zentren.

Im ersten Fall durfte eine verzogerte Rekombina-
tion nicht beobachtet werden. Im zweiten Fall miite
sich die Mn-Emission einordnen lassen in das Sy-
stem anderer Ubergangselemente, die Niveaus in
der verbotenen Zone bilden. Im letzten Falle mif3-
ten die Spannungskurven der gelben bzw. griinen
und blauen Emission streng parallel liegen.
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Das Auftreten von zwei Steigungskonstanten C
oberhalb und unterhalb von U, in der Spannungs-
charakteristik der Mn-Emission zeigt, daf} minde-
stens zwei verschiedene Mechanismen vorliegen, die
allerdings noch nicht sicher identifiziert werden
konnen.

In einer folgenden Arbeit soll das Problem des
Energietransportes zwischen unterschiedlichen Re-
kombinationszentren in der Elektrolumineszenz re-
aktionskinetisch behandelt werden 3.

Wir danken Herrn Prof. Dr. I. Broskr fiir zahlreiche
wertvolle Diskussionen und der Deutschen Forschungs-
gemeinschaft sowie der Verwaltung des ERP-Sonder-
vermogens fiir die materielle Unterstiitzung dieser Ar-
beit.

25 1. Broser, H.-E. Gumuick u. R. Moser, Z. Naturforschg. 20a [1965], im Druck.

Zur Theorie nichtlinearer Spinorfelder
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The formal structure of a relativistic field theory is examined using functional techniques for
Green’s functions. The consequences of a locally conserved current constructed from a nonlocal
bilinear covariant are studied. They result in a modified from of the Takanasur identities. Some
problems are briefly discussed, which arise, if one tries to match conventional techniques as e.g. the
Berne-Savperer-method or the Scawinger-Frapkin formal solution with noncanonical quantisation.
The consistency of some approximation methods in relation to the afore mentioned problems and to
the existence of local currents is investigated. An expansion of the mass operator in powers of the
interaction, using exact propagators, turns out to be consistent only with canonical quantisation. For
Tamm-Dancorr-like approximations the problem is more intricate.

I. Einleitung und Problemstellung

Die relativistische Quantentheorie wechselwirken-
der Felder weist eine sehr komplizierte Struktur auf,
so daB es bisher nicht gelungen ist, exakte Losungen
in nichttrivialen Fallen anzugeben. Fiir die Diskus-
sion von Niherungsverfahren ist es aber von Wich-
tigkeit, die formale Struktur einer Theorie so klar
wie moglich vor Augen zu haben. Die folgende Ar-
beit verfolgt in erster Linie den Zweck, diese Struk-
tur fiir eine Spinortheorie mit Selbstwechselwirkung
herauszuarbeiten. Dadurch wird es moglich sein,
eine iibersichtliche Diskussion bereits verwendeter

1 H. P. Dirr, W. Heisensere, H. MirTER, S. ScaLiepEr u. K.
Yamazakl, Z. Naturforschg. 14 a, 441 [1959]. — H. P.
Dirr, ibid. 16 a, 327 [1961]. — Fiir eine zusammenfas-

Naherungsverfahren vorzunehmen und maogliche

Verbesserungen anzugeben.

Wir betrachten die Feldgleichung
Dy+PQ y(pQ y)=0. (1)

1y sel dabei ein quantisiertes Spinorfeld, das der
Vertauschungsrelation

{y(x),p(y)} =0 fir (r—vy)2 raumartig (2)

geniigt. D sei ein invarianter Differentialoperator
erster Ordnung, Q seien geeignete Matrizen. Fiir die
einfachste Form der von HeisexBerc und Mitarbei-
tern studierten Theorie ist z. B. 1

sende Darstellung siehe W. Heisexsere, Introduction to the
unified field theory of elementary particles, J. Wiley, New
York, im Erscheinen.
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D=1(0'a>
2

Qaﬁ Qaz* (3 8u'p Oy + Ta'p Tyo)

(3 a)
0“af Ouys .

In dieser Form hat der Operator die Eigenschaft
(Fierz-Symmetrie)

Qap Qs = — Qe O3s - (3b)

a'f’ y'o’ a'd" y'B

Unsere Uberlegungen haben fiir andere Kopplungen
ebenfalls Giiltigkeit, sofern sie (3b) erfiillen. Wir
beniitzen fiir die Multiplikation im Spin- und Iso-
spinraum und die Faltung im Koordinatenraum den
Matrizenkalkiil mit Summationsiibereinkommen fiir
doppelt vorkommende Indizes und schreiben die
Differentialgleichung durch Einfithrung von

D=0 (z® —2®) D (4 a)
und
Vit in =12 8(2) — 29) (a0 —20)
.6(1-(1') _x(m)) erl Ql:'m (4‘ b)

DR
formal als nichtlokale Gleichung
Dixwi+Vim,inPm ¥av1=0. (5)

Fiir andere Kopplungen als die durch (3) gegebene
ist lediglich (4 b) entsprechend abzuéndern.

Gl. (1) bzw. (5) sind als rein formale Beziehun-
gen aufzufassen, solange iiber die Produktbildung
von Feldoperatoren am selben Ort keine Aussage
gemacht wird. Wir fassen dieses Problem als Kon-
sistenzproblem auf: Wir betrachten das durch (5)
induzierte System von Gleichungen fir Vakuum-
erwartungswerte von zeitlich geordneten Produkten
von Feldoperatoren (Greexsche Funktionen), das
wir (im allgemeinen ndherungsweise) zu losen ver-
suchen. Aus der Struktur der Losungen bei kleinen
Abstinden versuchen wir dann sinnvolle Modifika-
tionen von Vi 1, zu finden, die die Form der Lo-
sungen moglichst wenig dndern, so dal bei Fort-
setzung dieser Prozedur schlieflich eine konsistente
Theorie entsteht.

II. Erzeugendes Funktional, Green’sche
Funktionen

Die Gleichungen fiir die feldtheoretischen GREEN-
schen Funktionen sind am besten mit Hilfe des Funk-
tionalkalkiils abzuleiten. Die Greenschen Funktio-
nen werden dabei als Antwortfunktionen auf eine
kleine #uBere Storung aufgefaflit: sie sind dann im
wesentlichen die Entwicklungskoeffizienten des Funk-
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tionals, das die Anderung des Grundzustandes un-
ter dem Einflul einer dufleren Storquelle beschreibt,
nach Potenzen dieser Quelle. Ein fiir unsere Zwecke
besonders geeigneter Formalismus wurde von Bre-
~i6 und WacNer 2 angegeben und in der nichtrelati-
vistischen Theorie des Mehrteilchenproblems mit Er-
folg angewendet, bei dem die Wechselwirkung eben-
falls durch eine Kopplung von vier Fermionfeldope-
ratoren beschrieben wird. Der Formalismus ist so-
fort auf den relativistischen Fall zu tibertragen. Wir
fithren eine nicht lokale, an v; i), gekoppelte dulere
Quelle ein und transformieren in die Wechselwir-
kungsdarstellung beziiglich der Kopplung an das
duBere Storfeld, so daB die transformierten Feld-
operatoren wieder die quellenfreie Gleichung (5)
erfiilllen. Als Greexsche Funktionen erkldren wir
dann mit

U=expliquyr@iy, V=(0|TU0) (6)

die Groflen
o 5 -9
Ca="= (0T U[0) = S In¥, (7)
Cimin= 5 (01T weynP@uU[0).  (8)

Die physikalisch interessanten Grofen sind dann die
Grenzwerte der Greenschen Funktionen fiir ver-
schwindende duflere Quellen

Skl = lim le 9
q—0

) etc. (9)
Skl, mn = lim le, mn
q—0

Sie werden, wie aus (7) zu sehen ist, durch das
Funktional V' erzeugt, d.h. sie entstehen aus ihm
durch ein- oder mehrmalige Differentiation nach der
Quelle und Nullsetzen derselben. So erhilt man z. B.
aus der Definition (7) eine Darstellung fiir eine
Korrelationsfunktion als Funktionalableitung

ka, n = ka, In— Gri Gon
00 0 9 Wy (10
= Sqrm  Odnm 5q1k L9}

An Stelle dieser Korrelationsfunktion ist fiir manche
Zwecke die Verwendung ,amputierter” Groflen von
Vorteil. Durch Abspalten von zwei Faktoren G (Am-
putation von zwei Beinen) erhélt man eine oft ver-
wendete Grofle, die Vertexfunktion

Fip jo= =Gt T'xp,14 Gt ﬁ - ﬁ

2 W.Brenic u. H. Wacner, Z. Phys. 173, 484 [1963].

(11)
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die, wie man sich leicht iiberzeugt, die Funktional-
ableitung der reziproken Ausbreitungsfunktion ist

Fip,iq=5c -ilj/é%p- (12)

Fiir gewisse Probleme ist es giinstiger, von dem
korrelierten Anteil von F

Nik, tm = Gik, in — Cit Grm + Gim Gry=Fip, i+ Gin Gy
(13)
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auszugehen. Wir definieren zwei durch Amputation
entstehende GréBlen durch

- Lis, jr G]‘k =i Gij Gsm ij, In le Gnr . (14')
Die ZweckmaBigkeit dieser Definitionen wird spa-
ter einsichtig werden.

Die Massen von Teilchen-Antiteilchen-Bindungs-
zustinden und die Ankopplung derselben konnen
aus der Struktur der Vierpunktfunktionen berechnet
werden. Sei die Fourier-Transformation von F

Nis, kr =

Fiy = —— d*p d*q d*k exp{i(k/2, 2" + 2! — ¥ — 2') }exp{i(p, x' — x) } exp{i(q, 2* —2%) } Fir, 1(p, q | k)

(analog fiir I', 5 oder L), so kann gezeigt werden 3,
dal F bei Vorhandensein von Bindungszustinden
Pole in der Variablen 42 hat, in deren Umgebung
die Bilinearentwicklung

Fiu,i(p,q|k) = ; v P oueh)

k2+Mn2
ﬁ = g-f.n

gilt. Da der unkorrelierte Anteil an dieser Stelle
reguldr ist, kann er vernachlissigt werden, und
alle anderen Vierpunktfunktionen (I', %, L, T) ha-
ben ein analoges Verhalten. Die Kopplungskonstan-
ten fiir die gebundenen Teilchen konnen aus den
Residuen von I' an den entsprechenden Polen be-
rechnet werden. Man hat dabei aber zu beachten,
daBl nicht alle Pole als Teilchen (echte Bindungs-
zustdnde) interpretierbar sind. Infolge der singu-
laren Struktur der Integralgleichungen, denen die
Vierpunktfunktionen in relativistischen Theorien ge-
niigen, konnen, vor allem bei der Ruhemasse Null,
»anomale“ Pole auftreten, die pathologische Eigen-
schaften haben (z. B. Kopplungskonstante Null, un-
endliche oder negative Norm) und daher keine phy-
sikalische Bedeutung haben %. Thre Interpretation als
Teilchen wiirde zu Schwierigkeiten (nichtunitdre S-
Matrix) fiithren.

(16)

3 S. ManpeLstam, Proc. Roy. Soc. London A 233, 248 [1955].

4 Siehe J. GoupstEIN, Phys. Rev. 91, 1516 [1953], ferner S.
ManpeLstam, L. ¢. 3 und Proc. Roy. Soc. London A 237, 496
[1956]. Ahnliche Verhiltnisse liegen fiir die Dirac-Glei-
chung vor: K. M. Casg, Phys. Rev. 80, 797 [1950]. Manch-
mal haben Pole, die von verletzten Symmetrien herriihren
(sog. ,,GoLpstone-Teilchen“), diese Eigenschaft, s. M. Ba-
KER, K. Jouxson u. B. W. Leg, Phys. Rev. 133, B 209 [1964]
und K. Jonnson, nicht veroffentlicht.

(15)

III. Gleichungen fiir die Green’schen Funktionen

Als Folge von (1) bzw. (5) erfillen die GreEx-
Funktionen ein gekoppeltes, unendliches System von
Differentialgleichungen, das durch die Funktional-
differentialgleichung

3 1) )

Dt 06 gni Var, 7.),77,. V =00 8imV (17
( o qutiVins 5 )5 - V=000 (17)
erzeugt wird. Dabei ist 9, das niedrigste Moment
der Lenmannschen Spektralfunktion von G:

Qo=0f o(=?) dax>. (18)
Thre Kenntnis impliziert eine Aussage iiber das Ver-
halten der Theorie bei kleinen Abstinden, die an
dieser Stelle noch nicht gemacht werden soll. Bei
kanonischer Quantisierung wird g,=1 gesetzt. Es
kann sich herausstellen, daf} dies nicht widerspruchs-
frei moglich ist und nur @,=0 zu einer divergenz-
freien Theorie fithrt (nichtkanonische Quantisie-
rung). Bei anwesendem Feld wird o, selbst im letz-
teren Fall nicht notwendig Null sein. Damit die hier
gegebene Herleitung gilt, mul dann jedoch

lim gy =lim % o

=0 g0 dq
angenommen werden, da Ableitungen von o, ver-
nachldssigt sind 5.

5 Wenn der kanonische Vertauschungsausdruck fiir v keine
c-Zahl ist, muB in allen Formeln o, 0xm durch

70 0 (tk—1tm) {0 | T{wk, Pm} U|0) -V 1

ersetzt werden.
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Zur Illustration schreiben wir die untersten Glei-
chungen des Systems an. Fiir die Zweipunktfunktion
erhilt man

(Dkl+90qkl+inr,lS(Gsr+ .. )) Gim= 0 Opm -

dqrs
(19)

(Dkl + 99 9Kt +1i Vkr, js (2 6]‘1 Gs — Ljs, Zr)) Gin = 99 6km s

H. MITTER

Durch Einsetzen von (10) kann die Gleichung in
eine Beziehung zwischen G und F (oder I” etc.) um-
geschrieben werden. Fiir diese Groflen kann man
dann durch Differentiation von (19) weitere Glei-

chungen bekommen. Wir schreiben das System fur
G und L aus (14) an:

(Dri+ 00 gx1) Liv,na +2i Vi, 1s(Gsr Lip, na + 010 Gir Lep, i)

0qab

Der Faktor 2, der in (20) im Vergleich zu (19)
auftritt, hdngt mit der Tatsache zusammen, dafl L
aus der Korrelationsfunktion 7 gewonnen wurde.

(20)
. oL .
+ 1 Vir, 15 ( L LA SN P ) =2iVir,1n Gia Gpy . (2D
Definieren wir nun einen neuen Vertex durch
oG}
Baglb =7, ma > (25)

Daher tritt im Wechselwirkungsterm nicht nur der
Harrtree-Term [wie z.B. in (19)], sondern auch
der Fock-Term auf, der hier wegen der Symmetrie-
eigenschaft (3b) mit dem HartrEE-Term identisch
1st.

IV. Aquivalenz von Theorien mit Fermi-
und Yukawa-Kopplung

Wie von mehreren Autoren bemerkt wurde ¢, sind
Theorien wie die hier betrachtete unter gewissen
Umstdnden weitgehend dquivalent zu solchen wech-
selwirkender Bose- und Spinorfelder mit Yukawa-
Kopplung der Bose-Felder an die Fermionenstrome.
Da dieser Zusammenhang wichtig erscheint, soll er
hier aufgezeigt werden.

Wir definieren eine Grofle a;; durch

a1 =00 qrt + 1 Vir, 15 Gsr - (22)
Dann ist wegen (10)
gﬂfl' =Q0 6kp ‘Slq +i Vkr, s qu, n = Dkq, ip+ (23)
dpq

Nun eliminieren wir die Ableitung nach ¢, indem
wir alle Grolen als Funktionale von a auffassen:

6 _Esrapqi(s 6

e = = — 24
(Slhs (S(Irs 601)(1 s 5017(1 ’ ( )
Wir gehen von (19) aus und schreiben fiir
oG OGiim OGiim
6(;: = — G/l"'&;s . Cu'm= — G Dps, qr 5a;q Gitri s

8 1. Bravynicki-Birura, Phys. Rev. 130, 465 [1963] u.
Rochester Report URPA-11 [1963]. — J. D. Biorkex,
Ann. Phys. N. Y. 24, 174 [1963]. — G. S. GuraLnik, Phys.
Rev. 136, B 1404 u. B 1417 [1964]. — Die letzteren bei-

so wird (19)

(Dyri+ar— i Vir, is Gij Dy, gr Vig, 1) Gim= 0y -
(26)

Diese Gleichung ist vollkommen analog zu der ent-
sprechenden Gleichung einer Boson-Fermion-Theorie
mit Yukawa-Kopplung (in einem aufleren Bosk-
Feld), wobei in letzterer a;; der Vakuumerwartungs-
wert des Bose-Feldoperators (der bei Anwesenheit
eines dufleren Feldes nicht verschwindet), D der
Bosonpropagator und y der Fermion-Boson-Vertex
ist. Fiir die Elektrodynamik lautet die entsprechende
Gleichung z. B.

[iy‘u ay—m+€0 y'u<A‘u> —‘ieoy‘uD’“yGFv] G=6.

Die Identifizierung von D als Propagator ist auch
in unserem Fall gerechtfertigt, wenn F im Impuls-
raum Pole in %2 hat, denn diese Variable entspricht,
wie man sich durch Fourier-Transformation von
(23) tuberzeugt, gerade dem Impuls des transpor-
tierten ,Bosons“. Die Diskussion der Aquivalenz
lauft also auf den Nachweis der entsprechenden Pole
hinaus. Die Kopplungskonstanten sind im Prinzip
aus (26) zu berechnen. Wenn F bekannt ist, kennt
man auch y, denn diese Grofle kann (wenigstens im
Prinzip) durch Vergleich von (12) mit (25) unter
Verwendung von (24), (23) und (11) berechnet
werden.

den Autoren betrachten Theorien mit entartetem Vakuum.
Siehe auch dltere Versuche von B. Jouver, Nuovo Cim. 5, 1
[1957]. — P. G. O. Freuxp, Acta Phys. Austr. 14, 445
[1961].
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V. Eichinvarianz und lokale Stromerhaltung

In der zur Feldgleichung (5) gehorigen klassi-
schen Theorie wiirde man in iiblicher Weise auf die
Existenz von lokalen Stromen schlieBen konnen, die
aus Feldoperatoren am selben Ort bilinear gebildet
sind:

j“(x) =9 (z) C“By ()

(C* B ist dabei ein aus den Matrizen der Theorie ge-
bildeter Ausdruck?) und als Konsequenz der Feld-
gleichung einer Kontinuitétsgleichung geniigen:

3% j.=0. (28)

(27)

In der Quantentheorie ist diese SchluBweise wegen
der Singularitdt des Produktes von Feldoperatoren
am selben Ort nicht zulédssig. Man sieht jedoch, daf}
die Frage der Existenz lokaler Strome mit der ge-
nauen Form des in (5) auftretenden Produktes zu
tun hat. Von der Physik her gesehen ist nur die Exi-
stenz eines einzigen lokalen Stromes (des elektro-

Wir betrachten die spezielle Quelle

Zie
qu=CB A5 (U F50) f(a) —20) exp |i | dse 45 (£) B]

und die Eichtransformation
y(z) = @By (x),
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magnetischen) gesichert. Ob der zweiten absolut er-
haltenen Ladung (der Baryonenzahl) in derselben
Weise wie der elektromagnetischen ein lokaler Strom
zugeordnet werden kann, ist zweifelhaft. Fiir die nur
niherungsweise erhaltenen Groflen (wie z.B. den
Isospin) erscheint eine solche Annahme nicht sinn-
voll. Unabhéngig von dieser Problematik ist aber
die Frage interessant, wann eine durch eine Vor-
schrift fir das Produkt am selben Ort gegebene
Theorie des hier betrachteten Typus einen lokalen
Strom enthélt. In diesem Abschnitt soll daher an-
genommen werden, dal} dies der Fall ist, und es sol-
len die Konsequenzen der Annahme fiir die GREEN-
schen Funktionen untersucht werden. Diese Kon-
sequenzen sind fiir eine — exakt oder nidherungs-
weise — vorgegebene Theorie einfacher zu iiber-
priifen als die Operatorbeziehung (28). Besteht man
im Rahmen einer Naherung darauf, sie Schritt fiir
Schritt zu erfiillen, so kann man auch iiber mégliche
Produktbildungen Aussagen machen, da dann jeden-
falls das in (28) auftretende Produkt erklart ist.

Der Quellterm gj; y; ¥y dndert sich bei (30) nur um die Divergenz des Stromes

} (29)

A (@) > A5 (2) +3uA(2). (30)
x+2/2

(31)

j*(x) = [ Pla+3[2) C*Bexp (i [ dée 45(5) By v (x—2[2) () d'z.

Setzt man daher die Anderung von ¥ bei (30) Null, so erhilt man eine Beziehung, die dem Erhaltungssatz
(28) fiir diesen Strom #quivalent ist. Bevor wir diese Variation berechnen, sollen noch einige Bemerkun-
gen zu den in (29) auftretenden GroBlen gemacht werden.

Die invariante Funktion f ist als Ausschmierungsfunktion zu verstehen, die wegen der singuldren Natur
des Produktes der Feldoperatoren eingefiihrt wurde. Formal folgt (28) aus der zu (5) gehorigen Lacrance-
Funktion nur fiir streng lokales f. Uber die genaue Form von f Angaben a priori zu machen, erscheint
riskant: eine d-Funktion, die zu (27) zuriickfiihrt, wire sicherlich zu naiv. Es konnen kompliziertere Limes-
bildungen nétig sein. Eine schon vor ldngerer Zeit untersuchte und neuerdings wieder diskutierte Moglich-
keit 8 wire z. B.

f(z) =lin%)6(z—s) , (32)
wobei der Limes moglichst spit (z. B. nach Ableitung der Gleichungen fiir die GrREExschen Funktionen)
zu bilden ist. Eine wirklich saubere Bestimmung von f ist nur zusammen mit der am Schlu8 von Abschn. I
formulierten Konsistenzbetrachtung maglich.

8 P. A. Dirac, Proc. Cambridge Phil. Soc. 30, 150 [1934]. —
W. HeisenBerg, Z. Phys. 90, 209 und 92, 692 [1934]. —
J. G. Varatiy, Proc. Roy. Soc. London A 222, 93 und 228
[1954]. — J. Scawincer, Phys. Rev. Letters 3, 296 [1959].

7 Fiir die Kopplung (3) hitte man zwei Strome C+ B=ou-1
bzw. C« B=o«- t die als Baryonen- bzw. Isospinstrom zu
interpretieren waren.
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Die Grofle A¢ ist als duBeres (,klassisches”) Feld zu interpretieren. Die Annahme, daf} es so ein Feld
gibt, ist (sofern es einen erhaltenen Strom gibt) wohl unproblematisch, da es nur als formales Hilfsmittel
dient. Weniger klar ist schon, ob im Exponenten von (29) wirklich 47, stehen muf} oder ob man in (31)
ein aus Feldoperatoren v geeignet aufgebautes ,inneres Feld A, einzusetzen hat [das natiirlich die rich-
tige Eicheigenschaft (30) haben mufl]. Im letzteren Fall wére der Strom kein bilinearer Ausdruck mehr,
und es wiren auch noch an anderen Stellen Modifikationen notig. Der Einfachheit halber soll hier ange-
nommen werden, daB man mit 4f, auskommt [oder, was wohl gleichwertig ist, dal A, im Exponenten von
(31) durch seinen Vakuumerwartungswert ersetzt werden darf].

Wir berechnen nun die durch eine infinitesimale Transformation (30) bewirkte Anderung von V. Sie
setzt sich zusammen aus der durch die Transformation der 1y verursachten Anderung

0,V =(0|TUexpilgu(iiB v x—ilxywxB)+...]1]0)—(0|TU|0)
T 5By =— 1 S) _a (5B
= —(0] TU(Ikﬁ(/’»zB ViPr — A WszB)J ) == 9n (lz (B 6q)“ A (6(] B)z.-z) v,
B=C0B+C0, CyB=BC‘u,
und der durch die Anderung der Quelle bedingten V ariation

oV ov (k) T2 (k) Fx(1
8. V=2"_35 '=Jd4“d4 K u L \>,_,<12(,<>, >)
q V 6(]“ qr X(k) (10) 5qkl C B ]‘(xm I(l)) a,, ( 2 ) 2

Setzt man die gesamte Anderung von ¥ Null OV =08,V+0,V=0,

so erhidlt man nach einmaliger partieller Integration und Einfithrung der Schwerpunkts- und Relativkoordi-
naten

=% (x@ +20), 2=2m — 2@
durch Koeffizientenvergleich beziiglich 4 die Beziehung

(C*B) i Buan) [ dtz 27 f(2) =i qua [O (B ai’)u — S (8% Ez)“}r/. (33)

Division durch V' zeigt, daf} dieselbe Relation auch fir In V" gilt.

Diese Beziehung erzeugt ein unendliches System von Beziehungen zwischen den Greenschen Funktionen,
die sogenannten Warp—Takanasnur-Identitaten ?, die dem Erhaltungssatz (28) dquivalent sind. Zur Illustra-
tion geben wir die untersten beiden Relationen an. In nullter Ordnung beziiglich ¢ erhélt man die Kon-
tinuitatsgleichung fiir den Vakuumstrom

Ou(xm) SpC* B [ S(zwy, xp) f(z) d*z=0. (34)
In erster Ordnung erhélt man
i (Onr (B S) s — Oms (S B) rs) = (C* B) 12 Bu(m) [ f(2) Fry, ot d%go0. (35)

Diese als verallgemeinerte Warp-Identitit bekannte Beziehung kann auch als Relation zwischen S™! und I"
geschrieben werden:

Onr (BS™)rs=0ps(STB) 1) = (C*B)ia - Bulm) | & f(2) T g0 (36)

Fir eine vorliegende Naherungslosung konnen  Ausgangsgleichung (5) vertrdglich sein, wenn die
die Warp—Takanasnui-Identititen, z. B. (36), stets Identitiaten mit nicht zu stark nichtlokaler Ausschmie-
nachgepriift werden. Die Naherung wird nur dann  rung erfiillt sind, so daf} die verbleibende Inkonsi-
mit der Existenz eines lokalen Stromes und mit der stenz auf die Definition des Produktes von Feld-

9 Diese Relationen wurden in der Feldtheorie bisher nur fiir retisch gefunden: J. C. Warp, Phys. Rev. 78, 182 [1950].
lokal aufgebaute Stromausdriicke diskutiert, vgl. Y. Taxka- Die erste allgemeine Untersuchung von Bedingungen fiir
nasui, Nuovo Cim. 6, 370 [1957]. Ein Spezialfall von (28) Matrixelemente, die aus dem Erhaltungssatz (28) folgen,

wurde fiir die Elektrodynamik schon vorher storungstheo- stammt von G. Kirren, Helv. Phys. Acta 26, 755 [1953].
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operatoren am selben Ort geschoben werden kann.
Man hitte dann im Sinn des am Ende von Abschn. I
formulierten Konsistenzproblems die Rechnung so-
lange mit einer durch Einbeziehung von f verander-
ten Lacrance-Funktion zu wiederholen, bis volle
Konsistenz vorliegt. Die in diesem Abschnitt studier-
ten Identitaten konnen also nicht nur Aufschluf} iiber
die Konsistenz von Naherungen, sondern auch iiber
die Struktur der Theorie bei kleinen Abstianden
geben.

Aus der obigen Ableitung folgen die Beziehungen
(32), (33), (34) nur dann, wenn der Grundzustand
bei der Transformation (30) invariant bleibt. Fiir
Theorien mit entartetem Vakuum ist dies nicht mehr
der Fall. Formal hitte man in 0/ noch die Variation
einzuschlieen, die durch die Transformation des
Vakuumzustandes bedingt ist. Dies fiithrt jedoch da-
zu, daf} OV identisch Null wird und gibt daher keine
einschriankende Relation fir V. Dies bedeutet jedoch
nicht notwendig, dal} bei entartetem Vakuum keine
Warp-Identitaten gelten.

VI. Massenoperator, Bethe-Salpeter-Gleichung

Wir versuchen, fiir G™! einen expliziten Ausdruck
zu erhalten, indem wir (19) in der Form

(D+90q+M)kl Glnz:Ekm (37)
schreiben. Wenn (19) gilt, ist natiirlich
Ekm = ‘90 61{7)1 . (38)

Der so eingefiihrte Massenoperator kann dann leicht
durch G und eine der Vierpunkfunktionen ausge-
driickt werden. Es gilt z. B.

Mkl =i Vkr,ns (2 Gsr 6nl = Lns, Ir)

(39)
=i Vkr, ns (Gsr 67;! . Gnm Fms, lr) .

Wir fassen nun M als Funktional von G (und q)
auf. Aus (21) sehen wir, dal M nur iber G von ¢
abhangt. Dies ist auch verstandlich: M hangt von
den hoheren Greenschen Funktionen ab, die tber
das ganze System wieder von G abhingen. Es ist

daher
My - 0Grs 40 o M1
=% =i Ko pp 2 a) mit i Ky ;= 2"
Bwn L Bk, ir 340q ( ) 10 L Rgs, ir 5Crs
(40b)

Durch Differentiation von (37) nach ¢ kann man

daher eine Gleichung fiir eine Vierpunktfunktion er-
halten 10
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Elzl Flp, mq — — 90 Glzq G]mz —1 th Klfj, li Glm Fi[l, iq -
(41)

In einer kanonisch quantisierten Theorie ist E der
Einheitsoperator, und man erhilt die bekannte Form
der Gleichung. Wenn es Bindungszustande gibt, so
dal die Bilinearentwicklung (16) gilt, dann erfiillt
jeder Term der Bilinearreihe (jede ,,Wellenfunk-
tion“) die homogene Gleichung

Eip@1j(p, k) = — G (p + k/2) (42)
g (;*;)4 Kis,ir(ps g | k) Gij(p—k/2) @rs(q, B).

Definiert man eine homogene Boson-Fermion-Vertex-

funktion durch
®ii(p, k) = — G (p+k/2) vk (p+ k/2, p — k/2)

Gup-k2), @ - {Cff

so erfiillt auch diese die homogene BETHE-SALPETER-
Gleichung. Die Emission des gebundenen Teilchens
wird dann durch die Lésung der zugehorigen in-
homogenen Gleichung (inhomogene Vertexfunktion)
beschrieben, die an der Stelle k2 = M2 einen Pol hat.
Die Kopplungskonstante ist das Residuum dieses
Poles, also im wesentlichen der Wert des Vertex auf
der Massenschale (y:p) =m, k*=M,>

Gl. (42) kann fir die anderen Vierpunktfunktio-
nen umgeschrieben werden. Fiir die Korrelations-
funktion ist der inhomogene Term komplizierter.
Hingegen ist die Gleichung fiir 7 besonders einfach

EiiTin im=Kir,iu—1Kir 1s Gsp Gor Tpie, qm (44)

(43)

Bei gegebenem K ist dies, ebenso wie (41), eine
lineare Integralgleichung fiir die Vierpunktfunktion.
Kennt man die funktionale Abhangigkeit des Mas-
senoperators M von G, so kann K durch Differentia-
tion berechnet werden (dabei ist natiirlich G vor der
Differentiation als willkiirliche Funktion zu betrach-
ten). Die tatsichliche Form dieser Abhingigkeit ist
durch die Dynamik, d. h. den Wechselwirkungs-
ausdruck bestimmt. Der Sinn der Einfithrung von
M[G] und der dadurch virtuell durchgefithrten
Auflésung des unendlichen Gleichungssystems der
Greenschen Funktionen nach G besteht darin, daf3
eine der Struktur von ¥V ;», entsprechende Abhan-
gigkeit wenigstens naherungsweise angegeben wer-
den kann. Dies wird spiter gezeigt werden.

10 J. ScuwincEer, Proc. Nat. Acad. Sci. US 37, 452 [1951]. —
E. E. Sarperer u. H. A. Berug, Phys. Rev. 84, 1232 [1951].
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Das hier skizzierte Verfahren der Elimination der
Funktionalableitung durch Auflésung kann noch
weiter fortgesetzt werden: es ist moglich, auch noch
K ginzlich zu eliminieren, so dafl man eine einzige,
sehr komplizierte Gleichung iibrig behilt, die nur
G, T und seine Ableitungen nach G enthalt und
nichtlinear ist. Die Struktur von Naherungsverfah-
ren erscheint mit Hilfe dieser Gleichung durchsich-

H. MITTER

tiger (siehe 2). Wir ziehen es vor, diese Prozedur
an L statt T durchzufithren. Setzen wir in (21)

5Lls, nro_ 6[(23,"7 6,07{‘1
Oqab 0Gpg  Oqap (45)
oL
—_— ,éés'"’ (GpaOjp—Lyp, ja) Gig s
Pa

so ist 0/0q ohne Einfiihrung von K eliminiert: die
entstehende Gleichung fiir L ist

(D + 9 Q) kl le. na +21 Vkr, 1s(Gsr le, na + éln Gir st, ia)

: g oL ;
+1 Vkr, Is Lls, ir Lib, na —1 Vkr, Is (Gpa 61'17 =+ Lpb, ja) Gjg S0omr — 2 VI.-r. 1w Gia Gy

Diese Gleichung ist im Prinzip zusammen mit (20)
zu lsen. Das System ist wesentlich einfacher als das
aus (37) und der entsprechenden Gleichung fiir T
bestehende. Ebenso wie dieses letztere oder das Sy-
stem (37), (41) mit (10) und (40) kann auch das
Gleichungspaar (20), (46) als Basis eines iterativen
Naherungsverfahrens dienen.

Bei kritischer Betrachtung von (37) — (44) ist
ersichtlich, daf} diese Gleichungen an mehreren Stel-
len den Faktor g, enthalten. Wenn o, endlich ist,
ist dies blof} ein Schonheitsfehler. Durch die Substi-

tution

1 ’ -
p=Llye 4= ;l—q (47)
0

v=Vov/, o .
kann die Theorie in eine kanonisch quantisierte ver-
wandelt werden, denn die gestrichenen Groflen er-
filllen dieselben Beziehungen wie die ungestrichenen
mit 9y =1. Dieses Verfahren ist jedoch fiir 94=0
oder ~ problematisch. Wir ziehen es deshalb vor,
in den weiteren Abschnitten 9, (bzw. E) mitzuneh-
men.

Bei nichtkanonischer Quantisierung (9,=0) ist
(D + .0y ¢+ M) nicht mehr das Inverse zu G. Durch
Anwendung dieses Operators auf (41) oder (42)
kann man zwar auch in diesem Fall eine (differen-
tielle) Berne—SaLpETER-Gleichung gewinnen. Diese
hat jedoch nicht nur eine unhandliche, weil unsym-
metrische Form: infolge des Fehlens eines inhomo-
genen Terms sowohl in ihr als auch in (37) sind
die iblichen Niherungsverfahren zur konsistenten
Lésung des Systems nicht anwendbar. Die Einfiih-
rung des Massenoperators erscheint daher nicht sinn-
voll. Ein anderer Ausweg wire der, dal man auf
(38) verzichtet: da man M jedenfalls nur naherungs-
weise angeben kann, wire es moglich, dafl (38) zwar
exakt, nicht aber ndherungsweise erfiillt ist. Man

e (46)
19 (Scpq

hitte dann Naherungen fiir M und E so anzugeben,
dal} alle betrachteten Gleichungen mit moglichst klei-
nem Fehler erfiillt sind, wobei geeignete Kriterien
fiir die Kleinheit des Fehlers definiert werden miis-
sen. Ein solches Verfahren wurde von Heisexsere !
vorgeschlagen und ist zur Berechnung von Massen-
eigenwerten geeignet. Fiir die hier betrachteten Kon-
sistenzfragen kommt es jedoch weniger darauf an,
einen analytischen Ausdruck fir M anzugeben, der
in der Umgebung spezieller Werte von p* (z.B. in
der Niahe von Masseneigenwerten) zu einer guten
Naherung fiir S™1 fiihrt, sondern wir sind an der
funktionalen Abhéngigkeit M[G] interessiert (und
zwar sogar fiir beliebige G, da nach G funktional
differenziert werden muf}). Wenn das Problem die
Frage ist, ob 0y=0 konsistent ist, darf aber diese
Bedingung nicht vom gewdhlten Naherungsverfahren
abhéngig gemacht werden. Man konnte in der Tat-
sache, dal} bei bisher vorgeschlagenen Realisierun-
gen nichtkanonischer Zweipunktfunktionen ! der in-
verse Propagator nicht durch einen Differentialaus-
druck erster Ordnung gegeben ist, einen Hinweis
darauf erblicken, daB fiir diesen Fall (37) bzw. (41)
kein giinstiger Ausgangspunkt ist. Moglicherweise
ist daher fiir nichtkanonische Quantisierung das von
(20), (46) ausgehende Verfahren vorzuziehen, das
eine Alternative zu den oben erwihnten Naherungen
fir M darstellt. Im Gegensatz zur BETHE-SALPETER-
Gleichung enthilt die Gleichung fiir L auch fiir
09— 0 einen inhomogenen Term [die rechte Seite
von (46) ], so dal} iteriert werden kann. Der hohere
Komplikationsgrad muf} allerdings in Kauf genom-
men werden.

11 Dies sind die Dipolgeist-Regularisierung, die insbesondere
in L. c. ! ausfiihrlich diskutiert wird, und die Regularisie-
rung durch asymptotische Skaleninvarianz: H. Mirteg,
Nuovo Cim. 32,1789 [1964].
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VII. Symmetrieverletzung und Goldstone-
Teilchen

Bei vielen quantenmechanischen Problemen ist
der Grundzustand weniger symmetrisch als die Be-
wegungsgleichung. Fir die Feldtheorie wiirde dies
bedeuten, dal der Vakuumzustand nicht bei allen
Transformationen, die (1) invariant lassen, unge-
andert bleibt. Diese Symmetrieverletzung hat in der
Elementarteilchentheorie Bedeutung erlangt, da sie
es ermoglicht, einen Teil der in der Natur beobach-
teten exakten oder approximativen Symmetrien auf
Eigenschaften des Vakuums abzuwélzen und da-
durch mit einfacheren Feldgleichungen auszukom-
men. Im allgemeinen resultiert als Konsequenz das
Auftreten von Polen bei der Ruhemasse Null 12. Die
Frage, ob diese Pole als physikalisch brauchbare Zu-
stinde (Teilchen) interpretierbar sind und welche
Eigenschaften sie haben, ist fiir die Theorie von
Wichtigkeit. Im Anschlul an die im vorigen Ab-
schnitt verwendeten Methoden kann eine Formulie-
rung dieses Problemkreises angegeben werden, die
fiur die Klarung dieser Frage, auch im Rahmen von
Naherungen, besonders geeignet erscheint 3.

Wir nehmen an, daf} die zur verletzten Symmetrie
gehorige Gruppe eine Eichgruppe erster Art ist und
studieren daher eine Transformation (30) mit kon-
stanter Phase
(48)
Auflerdem nehmen wir an, dafl die im Massenope-
rator vorliegende Abhéangigkeit von G die Symmetrie
erhalt. Dieser Sachverhalt wird immer vorliegen,
wenn diese Abhingigkeit in systematischer Weise
gewonnen wird, denn sie entspricht dann im wesent-
lichen der Struktur des Wechselwirkungsausdruckes
Vik, Im + .

Wir berechnen die durch (48) bewirkte Anderung
von G und variieren (37) :

OM Gim+ (D + 09 g+ M) 12061 =0.
Infolge der Symmetrie von M [G] erfolgt die An-

w—> ey,

derung von M nur durch G

12 J. Gorpstong, Nuovo Cim. 19, 154 [1960]. — J. GoLpsToNE,
A. Satam u. S. WemBerG, Phys. Rev. 127, 965 [1962]. —
S. Brupman u. A. Kiein, Phys. Rev. 131, 2364 [1963].

13 Dijese Betrachtungsweise wurde von Jounson im Zusam-
menhang mit elektrodynamischen Problemen verwendet
(miindl. Mitteilung, siehe auch M. Baxker et al., L. c. 4).

14 Zur Normierung von Losungen der Berne—Sarperer-Glei-
chung mit Hilfe eines Erhaltungssatzes fiir den Strom
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oG erfiillt daher die Gleichung
(D + 0 g+ M) 1y 0G1 + 1 Kyj, 1i G1yy 0G5 =0 (49)

oder anders geschrieben

En Gy, = —i Gy Kij 1 G 0Gij - (50)

Durch Transformation in den Impulsraum sieht man,

daf}

} 8Gy=i(B 6—GB)y (51)
eine spezielle Losung @Y (p,0) der homogenen
BerHE-SALPETER-Gleichung (42) zur Energie Null
ist

Eji0S(p) = —1Sn(p) (52)
| o Kus,u(p 41 0) Sin(p) 0Si(q).

Wenn das Vakuum bei der Transformation (48) in-
variant ist, wird diese Gleichung trivial erfiillt, denn
dann verschwindet 6S. Das macht man sich am besten
an einem Beispiel klar: fiir gebrochene y;-Invarianz
ist z.B. 0S5 im wesentlichen der Antikommutator
von S mit y;, der bei invariantem Vakuum ver-
schwindet.

Wenn die Symmetrie durch den Grundzustand
verletzt wird, ist ¢® = (1/1) S eine nichttriviale
Lésung. Es ist dann zu untersuchen, ob diese Lo-
sung als Wellenfunktion eines Teilchens interpretiert
werden kann. Zunachst mufl dazu die Frage beant-
wortet werden, ob ¢ wirklich zur Masse Null
(k*=0) gehort. Wenn ¢© die Gleichung nur fiir
k.= 0, nicht aber fiir k. ¥+ 0, k2=0 lost, ist es als
Wellenfunktion eines Spurions zu interpretieren, das
keine Lorentz-Eigenschaften hat (es transformiert
sich bei Lorentz-Transformationen wie das Vakuum).
Wenn es erlaubt ist, die Integralgleichung (52) durch
Rotation der gy-Achse in eine Gleichung im euklidi-
schen Raum zu transformieren, folgt aus der Losbar-
keit fiir k., =0 diejenige fiir k2 =0 und es liegt kein
Spurion vor. Als néchstes ist dann zu entscheiden,
ob die mit der zu (42) gehdrigen Vorschrift gebil-
dete Norm* von ¢ (es handelt sich im wesent-
lichen um das Quadratintegral von S-¢(®) endlich
ist. Wenn dies nicht der Fall ist, hat man es mit

sieche K. Nisuwima, Progr. Theor. Phys. 12, 279 [1954]
u. ibid. 13, 305 [1955], S. ManpELsTAN, 1. c. 3, A. KLEIN U.
C. Zemach, Phys. Rev. 108, 126 [1957]. — Eine andere
Methode, die ohne Erhaltungssatz auskommt, stammt von
R. E. Cutkosky u. M. Leon, Phys. Rev. 135, B 1445 [1964].
— Fiir eine ausfiihrliche Diskussion des Falles k2=0 siehe
N. Naxkanisai, Phys. Rev. 138 B, 1182 [1965].
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einer anomalen Losung zu tun (vgl. Abschnitt II,
insbes. 4). Mitunter ist in diesem Fall die zugehérige
inhomogene Vertexfunktion nicht nur fir A%=0,
sondern auch fiir endliche %2 singuldr (siehe Baker
et al., l. c. ¥). Es erhebt sich die Frage, ob die Exi-
stenz anomaler Losungen eine Eigenschaft der Na-
herung oder davon unabhingig ist. Neue Untersu-
chungen '* machen letzteres wahrscheinlicher. Ist die
Norm jedoch endlich, so handelt es sich um ein ech-
tes Teilchen. Seine Kopplungskonstante kann, wie
im vorigen Abschnitt angedeutet wurde, aus der ent-
sprechenden Vertexfunktion berechnet werden. Man
sieht, daf} die hier angedeuteten Uberlegungen fiir
einen (z.B. ndherungsweise) gegebenen Kern K

wirklich durchfiithrbar sind.

VIII. Exakte formale Losung

Mit Hilfe der hier verwendeten Funktionalmetho-
den lafit sich sogar ein geschlossener Ausdruck fiir
die Transformationsfunktion V' [siehe (6)] ange-
ben, der de facto die formale Summierung der Sto-
rungsreihe darstellt. Man gewinnt ihn durch Ver-
gleich des Ausdruckes fir /' in den Wechselwir-
kungsbildern beziiglich der Nichtlinearitdt und be-
ziiglich der Kopplung an die Quelle. Seien die ent-
sprechenden Lacrance-Funktionen

Lo=quvuwr, Lw=%Vi rs@@ivsyr,

so ist, wenn wir die Anwesenheit der Quelle durch Q,
die der Nichtlinearitat durch W andeuten,

1

V = (out|in)qw= - (out| T e'la|in)y

(53)
= ; (out| T e |in)q,
wobei die Normierungsfaktoren die Transformations-

funktionen ohne Quelle bzw. ohne Nichtlinearitat

sind
N:(out|in)w, N = (54)

Entwickeln wir nun V' in der ersteren Darstellung

(out|in)q

nach Potenzen von [? und vergleichen mit der zwei-
ten Form, so sehen wir

15 Eine explizite Berechnung von N’ fiir eine lokale Quelle,
die auf den hier vorliegenden Fall sofort iibertragbar ist,
findet man bei J. Scawincer, The Theory of Coupled Fields,
Harvard Lecture 1954 (unveriffentlicht), dem wir auch in
den iibrigen Ableitungen dieses Abschnittes folgen. Siehe
auch Y. Karavama, Progr. Theor. Phys. 7, 205 [1952];
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F— 12(
P)e-o+ 812)r 0
N i A )
N'( Ty Vi.rs (.&Iks dq1r d F-0 i
’ i 6 6 ’
_N’-(N-}- 3 VA-I,rs 6qks—67]1—;[v+...>.

Durch Summation erhalt man

dars dqir | (55)

Damit ist V' auf die Transformationsfunktion N’
einer Theorie ohne Wechselwirkung, aber mit Quel-
len zuriickgefiihrt. Da die Greexschen Funktionen
durch funktionale Differentiation aus 7 gewonnen
werden konnen, sind sie durch die entsprechenden
der freien Theorie (mit Quellen) ausdriickbar. Die
letzteren sind aber mit Hilfe der Zweipunktfunktion

Ggo = 2N (56)
dqur
als StaTer-Determinanten darzustellen, z. B.
(0.q9) G(O Q)
km
G = (57)
i 0. 0.0) *
G;I)lq) G;ﬂ Q)

Alle Greenschen Funktionen der wechselwirkenden
Theorie konnen also im Prinzip durch die Zwei-
punktfunktion (56) ausgedriickt werden. Fiir V' lau-
tet dieser Sachverhalt 1%

s 1

det(1+9, g G©) (58)

4 | det(1+0, ¢GO) .

. [ &
Py Via.rs Oqr 5 ar |

Dabei ist G'” der Propagator eines freien Teilchens
(ohne Quelle)

G = (DY) . (59)

0, ist das erste Spektralmoment von (56) und die
Multiplikation bei der Determinantenbildung schliet
(im Sinne des in I eingefiihrten Matrizenkalkiils)
Raumintegration und Spin- bzw. Isospinsummation
ein.

Die exakte Losung (58) ist im allgemeinen fiir
praktische Rechnungen zu kompliziert. Sie kann je-
doch zum Nachweis von allgemeinen Eigenschaften
der Greenschen Funktionen dienen. Die Stérungs-

K. Yawmazaxi, ibid. 7, 449 [1952]; S. Hori, ibid. 7, 578
[1952] ; S. F. Epwarps u. R. E. Prierws, Proc. Roy. Soc.
London A 224, 24 [1954] ; K. Syma~zik, Z. Naturforschg.
9a, 809 [1954]; I. M. Gerraxp u. R. A. Mi~vos, Dokl
Nauk USSR 97, 209 [1954]; E. S. Frapkiy, ibid. 98, 47
[1954].
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reihe erhilt man durch Entwicklung der Exponen-
tialfunktion. Wenn man als Modell eine Theorie
im zweidimensionalen Raum betrachtet, kann (55)
sogar explizit ausgewertet werden 16, da der Propa-
gator (56) dann eine einfache Form hat.

Unklar ist an der obigen Formulierung noch, wel-
che Quantisierung ¢,” man in N’ bei nichtkanoni-
schem ©, zu verwenden hat. Da es sich um eine freie
Theorie handelt, wire a priori kein Grund dafiir
vorhanden, die kanonische Quantisierung abzuleh-
nen. Die Entwicklung des Exponentials in (55) bzw.
(58) fiihrt dann Term fiir Term auf eine kanoni-
sche, aber divergente Theorie. Ob die Summierung
beide Tatsachen indert und den radikalen Unter-
schied zwischen o, und g,” herbeifiihrt, ist nicht
sicher. Es ware auch denkbar, dal man nur zu einer
widerspruchsfreien Formulierung einer nichtkano-
nisch quantisierten Theorie gelangt, wenn man von
einer klassischen Losung (9," =0) ausgeht [die for-
male Schwierigkeit, da} dann das Argument der
Determinante in (58) trivial wird, kann durch Be-
trachtung der Greexschen Funktionen vermieden
werden]. Diese Zusammenhinge konnten an zwei-
dimensionalen Modellen studiert werden.

IX. Konsistente Niaherungsverfahren

Ein mit der Existenz lokaler Strome vertragliches
Niherungsverfahren ist in der Theorie des Mehr-
korperproblems !7 und in der Quantenelektrodyna-
mik 18 verwendet worden und kann auf den hier vor-
liegenden Fall ibertragen werden, weist aber bei
nichtkanonischer Quantisierung die am Ende von VI
erwihnte Schwierigkeit auf. Das Verfahren besteht
im wesentlichen in einer Entwicklung von M nach
Potenzen der Wechselwirkung Vi 1, ,» wobei aber M
stets als Funktional der exakten Zweipunktfunktion
aufgefallit wird. Aus der Storungsreihe fiir M kann
diese Entwicklung gewonnen werden, indem alle
Selbstenergieteile summiert und durch die exakte
Zweipunktfunktion ersetzt werden, so dal M die
Summe tber alle Skelettgraphen ist. Jedes Glied
dieser Summe entsteht also durch Summation von
unendlich vielen Termen der Stérungsreihe. Ohne
Bezugnahme auf die Storungstheorie kann diese Ent-
wicklung von M in folgender Weise hergeleitet wer-

16 Cu. M. SommerrieLp, Ann. Phys. N. Y. 26, 1 [1963].
17 Sijehe z. B. L. P. Kapaxorr u. G. Baym, Quantum Statistical
Mechanics, Benjamin Inc., New York 1962, Kap. 5.

1515

den: Man berechnet durch Differtiation der Dysox-
Gleichung (37) 0G/dq und setzt dies in die durch
Vergleich von (19) und (37) entstehende Beziehung
zwischen M und 0G/dq ein. So erhilt man eine
Funktionaldifferentialgleichung fir M

Mkl =2i Vkr, Is Gsr - L V/-‘r, ns G 6.Mm]

nm ¢ L
9 Oqrs

(60)

Diese Gleichung wird durch eine konsequente Rei-
henentwicklung nach Potenzen von V7 ,, iterativ
gelost. Die beiden ersten Terme sind

MA'[ =2i Vl;r, ls G.s'r == ’} Vkr, ls Gli Viq, in Gpr qu ...
<0
(61)

In graphischer Schreibweise ist die Struktur klarer.
Fir die Wechselwirkung (4b) erhalten wir

@=O+@+®+---

Differenziert man die mit diesem Massenoperator
gewonnene Funktion G™! nach ¢, so erhidlt man den
zugehorigen Vertex I'. Dieser erfiillt die BeraE—
SarLpeTER-Gleichung [vgl. (41)]

ka, lg— 6.1:(1 61)! = Ol K]x‘j, li Gir Frp, sq st s (62)
<o

wobei K eine Summe von Termen ist, die aus den

einzelnen Summanden von M gemall (40b) ent-

stehen
TRY = x+ xExDx + X0y + (63

Bricht man sowohl die Entwicklung fiir M als auch
die fir K an der gleichen Stelle ab, so erhalt man
stets ein System von Gln. (37), (62) fir G und I,
das die Wagrp-Identitat (36) erfiillt, wobei aber
1) =+ 8(2) (64)
[
ist. Um die Theorie konsistent zu machen, hat man
daher (vgl. S. 1511) die ganze Untersuchung mit
einem abgednderten Wechselwirkungsausdruck noch
einmal durchzufiihren, der diesem f entspricht. Das
bedeutet praktisch, dal man die ,,Renormierung*
(47) durchfihrt und de facto g9y=1 setzt. Die Kon-
sistenzforderung verbietet also bei diesem Néihe-
rungsverfahren nicht nur zu starke Nichtlokalitat
[weniger radikale Formen wie (32) sind noch zu-

18 K. Jonnson, M. Baker u. R. WiLLey, Phys. Rev. 136 B, 1111
[1964].
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lassig], sie erzwingt auBerdem die kanonische Quan-
tisierung. Ohne die einzelnen Ndherungen zu be-
rechnen, kann man dies auch in folgender Weise ein-
sehen: Die Warp-Identitat kann unter alleiniger Be-
niitzung von (12) und der Eichkovarianzeigenschaft

Ci'—>exp{—i(Aix—4)} Gi

abgeleitet werden. Fiir den aus (37) mit (61) be-
rechneten Ausdruck fiir G~1 ist (12) erfiillt, wenn
der Vertex in der entsprechenden Naherung aus (62)
berechnet wird. Die Eichkovarianzeigenschaft fiir G 1
gilt ebenfalls Term fiir Term, aber nur, wenn ent-

(Dri+ 00 gri+i Vi, js (Gsr 01— Gin Is 1r)) Gim = 99 Opem

H. MITTER

weder 0y=1 ist oder M;; einen Term (9,—1) Dy,
enthdlt. Da in der Entwicklung (61) ein solcher
Term nicht auftritt, fithrt nur 9y =1 zur Konsistenz.

Das eben beschriebene Verfahren kann aber noch
weiter verbessert werden, ohne dafl die Konsistenz
verlorengeht. Wie aus (63) ersichtlich ist, treten in
den hoheren Naherungen zu K Glieder auf, die Ite-
rationen niedrigerer Terme sind (z. B. ist der dritte
Term die Iteration des zweiten). Auch diese Terme
konnen auf verhaltnismdfig durchsichtige Weise
summiert werden. Zu diesem Zweck schreiben wir

Gl. (20) als Beziehung zwischen G und I’

(65)

und definieren sukzessive Approximationen zu G und I’ durch folgende Prozedur:

(D+00 @ m+iVir, 15 (G 83— G Tii3') =Ep G

(66)

Bei gegebenem I~V ist dies eine Gleichung fiir G"'. Nach Losung dieser Gleichung berechnen wir die
nichste Niaherung zu I' mit Hilfe der durch Differentiation von (66) nach ¢ entstehenden Gleichung

(n) : (n) 7 (n)
Ekh I'np,lq =9 6/;(1 611) +1 Vkr, js( - ‘6jl Gst)rtp,vq

Als niedrigste Ndherung ist

Iv;:(z))?lq = 6kq 61p (68)

zu nehmen. Man sieht, daf} in dieser Weise in jeder
Naherung eine Gleichung vom BetHE-SaLPETER-Typ
(62) fiir I' entsteht, deren Kern gemil (40b) ge-
bildet ist. Ordnung fiir Ordnung ist auch
o, =%
P Sqqp

erfiillt, so daf} auf die Giiltigkeit von (36) mit (64)
wie oben geschlossen werden kann. Graphische Ana-
lyse zeigt, da} die niedrigste Ndherung mit der ent-
sprechenden des vorherigen Verfahrens identisch ist,

hingegen in der nachsten in K bereits alle Ketten-
glieder (,,Zopfe*)

XX+ XX

aufsummiert sind. Man erhélt somit bei Einsetzen
des so gefundenen I" in die Dyson-Gleichung (37),
also bei Berechnung von G®, bereits die von ,ge-
bundenen Paaren* herrithrenden Korrekturen zu G:
wenn es solche Bindungszustinde gibt, wird man er-
warten, dal I’ die entsprechenden Pole hat.

In niedrigster Niherung (n—=1) erhélt man den
freien Propagator, da der HarTree-Term aus In-
varianzgriinden verschwindet 1. Die Gleichung fiir

-1 ) O %77
G z(;'l) <t G,(zﬁ) Fﬁt,;)),mq G 5»’3 I'xl‘lr ) — Gif) P

67
dqqnp ( )

die Vertexfunktion ist eine Integralgleichung mit der
symbolischen Lésung
w1
£ 1-vV S Sy

Die Losung kann sogar explizit angegeben werden,
da die Gleichung fiir F (im Impulsraum) wegen
der Lokalitiat der Wechselwirkung eine algebraische
Gleichung ist. Die Losung enthilt jedoch Divergen-
zen, denn die in ihr auftretende charakteristische

Grolle
VSS V~Hyv(k)
~Sp [Q“S(p+k/2) Q" S(p—k/2) d*p

ist divergent. Die Warp-Identitat ist erfiillt, wenn
(64) gilt und auBerdem H,, transversal ist

Ho (k) = (g,w— ’”'va) h(k2).

oo

Diese Bedingung ist wegen der starken Divergenz
des Integrals nicht erfiillt. Wenn man daher ein ge-
fahrliches Verfiigen iiber divergente Ausdriicke ver-
meiden will, mufl man diese Inkonsistenz durch Ab-
anderung von V. ;,, zu beheben suchen. Einen Hin-
weis darauf, wie dies geschehen konnte, gibt die ent-

19 Dies ist nicht mehr der Fall, wenn man die Lorextz-Inva-
rianz des Vakuums aufgibt. Fiir diesen Fall siehe J. D.
Biorkex u. G. S. GuraLnig, L. c. 8.
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sprechende Situation in der Quantenelektrodynamik.
Untersucht man die ndchste Naherung in (66) fiir
den Propagator und interpretiert sie im Sinn von
Abschnitt IV, so sieht man, dall a;; dem HaRTREE-
Term entspricht und durch die niedrigste Storungs-
niherung ersetzt ist. D ist im wesentlichen durch
V-FY) gegeben. Das Integral H entspricht der ,,Pho-
tonselbstenergiekorrektor” (mit der es auch analy-
tisch weitgehend iibereinstimmt), die dieselbe Schwie-
rigkeit hinsichtlich der Transversalitdt aufweist (qua-
dratisch divergente Photonmasse). Verwendet man
jedoch in der Elektrodynamik an Stelle von (27)
einen Ausdruck der Form (31), so wird diese
Schwierigkeit vermieden: In der Gleichung fiir D
treten als Folge der Exponentialfunktion in (31)
zusatzliche Terme auf, die fiir die Transversalitat
sorgen und auBlerdem den Divergenzgrad verrin-
gern 2%, Es ist daher zu erwarten, dafl die Verwen-
dung solcher Stromausdriicke hier dhnliche Effekte
hat. Eine genaue Untersuchung dieses Sachverhaltes
ist anscheinend noch nicht erfolgt.

. X. Naherungen fiir L

Durch geeignete Approximation von L und Ein-
setzen in die Dyson-Gleichung in der Form (20)
lassen sich ebenfalls Ndherungsmethoden gewinnen.
Ein mit der Warp-Identitat konsistentes Verfahren
kénnte z. B. analog wie im vorigen Abschnitt ge-
wonnen werden: man schreibt Gl. (20) als Bezie-
hung zwischen G™ und L~V und ersetzt (21)
durch jene Gleichung, die man durch Differentiation
dieser Beziehung nach der Quelle erhilt. In nullter
Naherung erhalt man dann wieder den freien Pro-
pagator und das Verfahren ist dquivalent zu dem
im vorigen Abschnitt betrachteten.

Eine der Struktur nach vollig andere Néaherung
erhalt man, wenn man in (21) oder (46) einzelne
Terme weglaft und die so gewonnene Gleichung zu-
sammen mit (20) lost. Wie eine solche Prozedur
zu einem systematischen Verfahren ausgebaut wer-
den kann, ist ein kompliziertes Problem und soll
deshalb hier nicht behandelt werden. Wir wollen je-
doch kurz einige Eigenschaften der einfachsten mog-
lichen Naherung diskutieren, soweit dies ohne allzu
detaillierte Rechnung moglich ist.

20 Sjehe z. B. K. Jonxson, Quantum Electrodynamics, Brandeis

Summer Institute lecture 1964, Prentice Hall, Inc. 1965.
21 Sje entsteht dort aus der niedrigsten nichttrivialen Tamm—

Daxcorr-Ndherung durch Vernachldssigung einiger Terme
(,,verkiirzte* Tamm—Da~corr-Methode). Eine Verbesse-
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Wir vernachlassigen in (21) :

(a) den nichtlinearen Term,
(b) die Funktionalableitung von L,
(¢) den linearen Term V- L.
Dann kann L sofort berechnet werden. Wir erhalten

Litha =2i G5V Vir1n Gia’ G1) (69)
und damit fiir die unterste Naherung zu ¥
MR =2iVi 1,65 —2Vir, ns GO Vi, 1, G CP.
(70)
@-0+

Durch Einsetzen in (20) entsteht eine nichtlineare
Integralgleichung fiir GV

(D+009) 1ri+2iVi, 15 G (71)
-2 Vkr, ns thi)i,q) Vip, lq Géi) G.;};)) Gl(nlz) =109 6km .

Diese Nidherung ist in der von Heisenserc und Mit-
arbeitern studierten Theorie ! in einem dhnlichen Zu-
sammenhang verwendet worden 2!. Dabei handelte
es sich um eine schwichere Form eines Konsistenz-
problemes: Fiihrt man namlich in (20) Zwischen-
zustdnde ein und verwendet die Translationsinva-
rianz, so erhalt man die Gleichung fiir jede Fourir-
Komponente von G, . Fiir jeden Fermionenzustand
mull G einen Pol haben und daher (D+ M) ver-
schwinden. In den erwihnten Arbeiten war dieser
Sachverhalt fiir eine plausibel angenommene Zwei-
punktfunktion tiberpriift worden. Stellt man die For-
derung nach Konsistenz in scharferer Weise, so wird
man (71) als Bestimmungsgleichung fiir GV auf-
fassen. Sofern die Gleichung nichttriviale Losungen
hat, muf} es sich um regularisierte Losungen han-
deln, d. h. die ersten beiden Momente von G miissen
verschwinden

Jo(x®) d®= [ x20(x?) dx2=0, (72)

da andernfalls die im nichtlinearen Glied auftreten-
den Produkte nicht existieren. Da die Gleichung for-
mal skaleninvariant ist, konnte man einen Ansatz
mit dem in 1. c. ! untersuchten asymptotischen Ver-
halten fiir kleine Abstande versuchen. Praktisch wird
die Frage, ob verniinftige L6sungen existieren, wahr-
scheinlich nur durch numerische Analyse geklart wer-
den konnen. Wenn dies der Fall ist, bleibt immer

rung, die einen Teil dieser Terme beriicksichtigt und der

Mitnahme eines Teiles der linearen Terme (c) entspricht,

wurde ebenfalls verwendet: H. P. Dirr u. W. HeisenserG,
Nuovo Cim. 37, 1446 [1965].
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noch die Frage nach der Konsistenz mit der Warp-
Identitat offen. Es ist klar, da3 (35) nicht mit der
aus (69) mit Hilfe der allgemeinen Beziehung [vgl.
(13) und (14)]

Fie,in=—GinGri— Li, jm Gy (73)

berechneten Vierpunktfunktion erfillt sein kann,
denn die so gefundene Funktion F) wire nicht die
Funktionalableitung von GV nach der Quelle. Eine
Chance fir Konsistenz besteht hingegen, wenn man
als zugehoriges F die Losung der aus (71) durch
Differentiation entstehenden BerHE-SALPETER-Glei-
chung

. OMy

(2 e
(D +T9Q g+ M(l)) kl Fls,anr E3 ’gci;; Fz('a,)jr GI()])L) (74)
6‘M(1)
+ ) (61.7 613 - 66({1) Gg(r)’q) GSMU) Gl(l]n) =0
i

nimmt (der letzte Term tritt auf, weil M in dieser
Niherung auch iiber G* 2 von der Quelle abhingt).
Dann ist die Differentialbeziehung (10) zwischen F
und G auch in dieser Ndherung erfiillt und es bleibt
lediglich die Frage zu kldren, ob die mit dem Auf-
treten von 9, zusammenhdngenden Probleme (vgl.
IX) der Konsistenz hier wirklich im Wege stehen.
Dazu mul} aber sowohl (70) als auch (74) wirklich
gelost werden.

Im Gegensatz zu der untersten Ndherung des im
vorigen Abschnitt behandelten Verfahrens ist (73)
auch im Impulsraum eine echte Integralgleichung.
Der Kern ist

K?lj;h = 2 Vl.'j. li — 2 Vl.‘j, ns Gfﬂ})) G)(l(})"(n Vrp, li
~2 Vks. ni G;ls) Giz(r’-'q’ Vrj, Ip -« (75)
E = X + x<x
Eine dhnliche Integralgleichung erhélt man 22, wenn
man das Bindungsproblem mit derselben ,,verkiirz-

ten Tamm—Dancorr-Methode* behandelt, die in der
oben erwahnten schwicheren Fassung des Konsistenz-

22 H. Stumer u. H. Yamamoro, Z. Naturforschg. 20 a, 1 [1965].
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problems fiir den Fermionzustand angewandt wurde.
Sie unterscheidet sich strukturell von der zu (74)
gehorigen homogenen BrrHE-SALPETER-Gleichung
fiir die aus F® nach (16) gebildeten Wellenfunk-
tionen nur im Kontaktterm.

Eine Verfeinerung der hier betrachteten Nahe-
rung konnte erhalten werden, indem die nach (73)
zu F? gehorige Funktion L® in (20) verwendet
wird. Man erhielte dann u. a. die Riickwirkung der
Bindungszustdnde auf die Fermionen. Es ist jedoch
zweifelhaft, ob es nicht giinstiger wire, zuerst in
(21) bzw. (46) mehr Terme mitzunehmen. Die Kon-
sistenzfrage 1Bt sich dann im Prinzip genau wie
fiir die hier betrachtete unterste Naherung diskutie-
ren.

XI. SchluBbemerkungen

Mit Hilfe der hier untersuchten Methoden ist es
gelungen, wesentliche Tatbestande der Feldtheorie,
wie z. B. das Auftreten von Bindungszustdnden und
deren Ankopplung oder die Existenz von lokalen
Erhaltungssétzen, auf analytische Eigenschaften bzw.
Beziehungen zwischen wenigen Funktionen zuriick-
zufithren, die ausnahmslos Vakuumerwartungswerte
sind. Auflerdem ermoglicht es der Funktionalkalkiil,
auch tiber kompliziertere Probleme wie die Struktur
und Konsistenz von Niaherungsverfahren Auskunft
zu erhalten und den Uberblick zu behalten. Als kon-
kretere Resultate diirfen die in den Abschnitten IX
und X formulierten Aussagen iiber die Konsistenz
von verschiedenen in der Literatur verwendeten Na-
herungsverfahren gelten. Uber den Nutzen der hier
gemachten Vorschlage wird die detaillierte Rechnung
in konkreten Fallen zu entscheiden haben, die durch-
fihrbar erscheint, aber noch aussteht.

Ich danke den Herren Prof. W. Heisenserc, Prof.
K. Jounson und Dr. H. Wacner fiir viele anregende
Diskussionen.



