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1. die direkte Anregung durch Stoß zwischen im 

elektrischen Feld beschleunigten „heißen“ Elek­

tronen und Mn2+-Zentren,

2. die Übertragung der beim Übergang von Elek­

tronen zwischen Störstellen und Bändern frei­

werdenden Energie durch Resonanz an Mn2+- 

Zentren,

3. die Reabsorption der Emission von Cu-Zentren 

in Mn2+-Zentren.

Im  ersten Fall dürfte eine verzögerte Rekombina­

tion nicht beobachtet werden. Im  zweiten Fall müßte 

sich die Mn-Emission einordnen lassen in das Sy­

stem anderer Übergangselemente, die Niveaus in 

der verbotenen Zone bilden. Im  letzten Falle müß­

ten die Spannungskurven der gelben bzw. grünen 

und blauen Emission streng parallel liegen.

Das Auftreten von zwei Steigungskonstanten C 

oberhalb und unterhalb von U0 in der Spannungs­

charakteristik der Mn-Emission zeigt, daß minde­

stens zwei verschiedene Mechanismen vorliegen, die 

allerdings noch nicht sicher identifiziert werden 

können.

In einer folgenden Arbeit soll das Problem des 

Energietransportes zwischen unterschiedlichen Re­

kombinationszentren in der Elektrolumineszenz re­

aktionskinetisch behandelt werden 25.

Wir danken Herrn Prof. Dr. I .  B r o s e r  für zahlreiche 
wertvolle Diskussionen und der Deutschen Forschungs­
gemeinschaft sowie der Verwaltung des ERP-Sonder- 
vermögens für die materielle Unterstützung dieser Ar­
beit.

25 I .  B r o s e r ,  H.-E. G u m l ic h  u . R. M o s e r ,  Z. Naturforschg. 20 a [1965], im  Drude.
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The formal structure of a relativistic field theory is examined using functional techniques for 
G r e e n ’s functions. The consequences of a locally conserved current constructed from a nonlocal 
bilinear covariant are studied. They result in a modified from of the T a k a h a s h i identities. Some 
problems are briefly discussed, which arise, if one tries to match conventional techniques as e.g. the 
BETHE-SALPETER-method or the S c h w in g e r -Fr a d k in  formal solution with noncanonical quantisation. 
The consistency of some approximation methods in relation to the afore mentioned problems and to 
the existence of local currents is investigated. An expansion of the mass operator in powers of the 
interaction, using exact propagators, turns out to be consistent only with canonical quantisation. For 
TAMM-DANcoFF-like approximations the problem is more intricate.

I. Einleitung und Problemstellung

Die relativistische Quantentheorie wechselwirken­

der Felder weist eine sehr komplizierte Struktur auf, 

so daß es bisher nicht gelungen ist, exakte Lösungen 

in nichttrivialen Fällen anzugeben. Für die Diskus­

sion von Näherungsverfahren ist es aber von Wich­

tigkeit, die formale Struktur einer Theorie so klar 

wie möglich vor Augen zu haben. Die folgende Ar­

beit verfolgt in erster Linie den Zweck, diese Struk­

tur für eine Spinortheorie mit Selbstwechselwirkung 

herauszuarbeiten. Dadurch wird es möglich sein, 

eine übersichtliche Diskussion bereits verwendeter

1 H .  P. D ü r r ,  W. H e is e n b e r g ,  H .  M i t t e r ,  S . S c h l ie d e r  u . K.
Y a m a z a k i , Z. Naturforschg. 14 a, 441 [1959]. — H . P.
D ü r r , ibid. 16 a, 327 [1961]. — Für eine zusammenfas-

Näherungsverfahren vorzunehmen und mögliche 

Verbesserungen anzugeben.

W ir betrachten die Feldgleichung

D xp + l2 Qv tp(xp Qv W) = 0  . (1)

xp sei dabei ein quantisiertes Spinorfeld, das der 

Vertauschungsrelation

{xp (x), xp(y) } =  0 für (x — y )2 raumartig (2)

genügt. D sei ein invarianter Differentialoperator 

erster Ordnung, Q seien geeignete Matrizen. Für die 

einfachste Form der von H e is e n b e r g  und Mitarbei­

tern studierten Theorie ist z. B. 1

sende Darstellung siehe W. H e is e n b e r g , Introduction to the 
unified field theory of elementary particles, J. Wiley, New 
York, im Erscheinen.
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D ~ (3 a)

Q V<xß ’ Qyö =  T (3 d aß ' Sy'd' +  Ta'ß' T v 'i')  Oaaß Ouyd •
a'ß’ y’ö'

In dieser Form hat der Operator die Eigenschaft 

(FiERz-Symmetrie)

f t f e  = - Q lö Q ’yl- (3 b)
a'/3' y'<i' a'<5’ y'ß

Unsere Überlegungen haben für andere Kopplungen 

ebenfalls Gültigkeit, sofern sie (3 b) erfüllen. W ir 

benützen für die Multiplikation im Spin- und Iso­

spinraum und die Faltung im Koordinatenraum den 

Matrizenkalkül mit Summationsübereinkommen für 

doppelt vorkommende Indizes und schreiben die 

Differentialgleichung durch Einführung von

Dik =  d (x® — x^ ) D (4 a)

und

Vik, im =  l2 * (*W - XW ) ö ( * «  -  X® )

-d(xW-xW) Qi1 Qkm (4b)
iT  Tc’rri’

formal als nichtlokale Gleichung

DikVk+Vim,lnVmVnVl= ° .  (5)

Für andere Kopplungen als die durch (3) gegebene 

ist lediglich (4 b) entsprechend abzuändern.

Gl. (1) bzw. (5) sind als rein formale Beziehun­

gen aufzufassen, solange über die Produktbildung 

von Feldoperatoren am selben Ort keine Aussage 

gemacht wird. W ir fassen dieses Problem als Kon­

sistenzproblem auf: W ir betrachten das durch (5) 

induzierte System von Gleichungen für Vakuum­

erwartungswerte von zeitlich geordneten Produkten 

von Feldoperatoren (GREENSche Funktionen), das 

wir (im allgemeinen näherungsweise) zu lösen ver­

suchen. Aus der Struktur der Lösungen bei kleinen 

Abständen versuchen wir dann sinnvolle Modifika­

tionen von Vik, im zu finden, die die Form der Lö­

sungen möglichst wenig ändern, so daß bei Fort­

setzung dieser Prozedur schließlich eine konsistente 

Theorie entsteht.

II . Erzeugendes Funktional, Green’sche 

Funktionen

Die Gleichungen für die feldtheoretischen G re e n -  

schen Funktionen sind am besten mit Hilfe des Funk­

tionalkalküls abzuleiten. Die GREENschen Funktio­

nen werden dabei als Antwortfunktionen auf eine 

kleine äußere Störung aufgefaßt: sie sind dann im 

wesentlichen die Entwicklungskoeffizienten des Funk­

tionais, das die Änderung des Grundzustandes un­

ter dem Einfluß einer äußeren Störquelle beschreibt, 

nach Potenzen dieser Quelle. Ein für unsere Zwecke 

besonders geeigneter Formalismus wurde von Bre- 

nig und Wagner 2 angegeben und in der nichtrelati­

vistischen Theorie des Mehrteilchenproblems mit Er­

folg angewendet, bei dem die Wechselwirkung eben­

falls durch eine Kopplung von vier Fermionfeldope- 

ratoren beschrieben wird. Der Formalismus ist so­

fort auf den relativistischen Fall zu übertragen. W ir 

führen eine nicht lokale, an y>i xpk gekoppelte äußere 

Quelle ein und transformieren in die Wechselwir­

kungsdarstellung bezüglich der Kopplung an das 

äußere Störfeld, so daß die transformierten Feld­

operatoren wieder die quellenfreie Gleichung (5) 

erfüllen. Als GREENsche Funktionen erklären wir 

dann mit

U =  exp{i qik xpk Wi} , v  =  ( °  I T U |0) (6) 

die Größen

G u = ^ ( 0 \ T Vky l V\0) =  -±-lnV, (7) 

Gkm,ln= y  (0\Tyt tpmipl ipn U\0). (8)

Die physikalisch interessanten Größen sind dann die 

Grenzwerte der GREENschen Funktionen für ver­

schwindende äußere Quellen

Ski = bm Gki,

q̂ °  etc. (9)
^kl, mn =  l i m  Gkl, mn 

g—K)

Sie werden, wie aus (7) zu sehen ist, durch das 

Funktional V erzeugt, d. h. sie entstehen aus ihm 

durch ein- oder mehrmalige Differentiation nach der 

Quelle und Nullsetzen derselben. So erhält man z. B. 

aus der Definition (7) eine Darstellung für eine 

Korrelationsfunktion als Funktionalableitung

Fkm, ln —  Gkm, ln ^k l Gmn

=  ln V. (10)
dqnm dqnm Öqik

An Stelle dieser Korrelationsfunktion ist für manche 

Zwecke die Verwendung „amputierter“ Größen von 

Vorteil. Durch Abspalten von zwei Faktoren G (Am­

putation von zwei Beinen) erhält man eine oft ver­

wendete Größe, die Vertexfunktion

^ip, jq ~ - G ikT kp .lqG ij,  ^  (11)

2 W .  B r e n i g  u . H. W a g n e r ,  Z. Phys. 173, 484 [1963].
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die, wie man sich leicht überzeugt, die Funktional­
ableitung der reziproken Ausbreitungsfunktion ist

r ip, ig= S G - i / S q „ .  ( 1 2 )

Für gewisse Probleme ist es günstiger, von dem 
korrelierten Anteil von F

Vik, im =  Gikt im C u  G km +  G-im Gki = Fikt im +  G\m Gki

(13)

auszugehen. Wir definieren zwei durch Amputation 
entstehende Größen durch

Vis, kr =  is, jr Gjk = i Gtj Gsm Tjm, \n G[k Gnr . ( 1 4 )  

Die Zweckmäßigkeit dieser Definitionen wird spä­
ter einsichtig werden.

Die Massen von Teilchen-Antiteilchen-Bindungs- 
zuständen und die Ankopplung derselben können 
aus der Struktur der Vierpunktfunktionen berechnet 
werden. Sei die FouRiER-Transformation von F

Fik, jl — ,0 1 , 1,  d4p d*q d4A: exp{i (k/2, x l +  x} -  :r* -  z*) }exp{i (p, x l -  x}) } exp{i (q, xk -  x1) } Fik> }l (p,
(Z  Jl) q I k) 

(15)

(analog für T , rj oder L),  so kann gezeigt werden 3, 
daß F bei Vorhandensein von Bindungszuständen 
Pole in der Variablen k2 hat, in deren Umgebung 
die Bilinearentwicklung

Fik n (p ,  q I k) = 2  <*>»*> ?«<**> +  . (16)

gilt. Da der unkorrelierte Anteil an dieser Stelle 
regulär ist, kann er vernachlässigt werden, und 
alle anderen Vierpunktfunktionen (71, rj, L, T ) ha­
ben ein analoges Verhalten. Die Kopplungskonstan­
ten für die gebundenen Teilchen können aus den 
Residuen von J 7 an den entsprechenden Polen be­
rechnet werden. Man hat dabei aber zu beachten, 
daß nicht alle Pole als Teilchen (echte Bindungs­
zustände) interpretierbar sind. Infolge der singu­
lären Struktur der Integralgleichungen, denen die 
Vierpunktfunktionen in relativistischen Theorien ge­
nügen, können, vor allem bei der Ruhemasse Null, 
„anomale“ Pole auftreten, die pathologische Eigen­
schaften haben (z. B. Kopplungskonstante Null, un­
endliche oder negative Norm) und daher keine phy­
sikalische Bedeutung haben 4. Ihre Interpretation als 
Teilchen würde zu Schwierigkeiten (nichtunitäre 5- 
Matrix) führen.

III. Gleichungen für die Green’schen Funktionen

Als Folge von (1) b z w . ( 5 )  erfüllen die G r e e n - 
Funktionen ein gekoppeltes, unendliches System von 
Differentialgleichungen, das durch die Funktional­
differentialgleichung

F^kl +  *7kl +  * V kr,  ls “7  ̂ ~  V  =  Qo ^km V  (17)
oqSr ) oqml

e r z e u g t  w ir d . D a b e i is t  £>0 d a s  n ie d r ig s t e  M o m e n t  

d e r  LEHMANNschen S p e k tr a lfu n k tio n  v o n  G:

@o ~  f  Qi*2) d*2.o
(18)

Ihre Kenntnis impliziert eine Aussage über das Ver­
halten der Theorie bei kleinen Abständen, die an 
dieser Stelle noch nicht gemacht werden soll. Bei 
kanonischer Quantisierung wird =  1 gesetzt. Es 
kann sich herausstellen, daß dies nicht widerspruchs­
frei möglich ist und nur £>0 =  0 zu einer divergenz­
freien Theorie führt (nichtkanonische Quantisie­
rung). Bei anwesendem Feld wird Q0 selbst im letz­
teren Fall nicht notwendig Null sein. Damit die hier 
gegebene Herleitung gilt, muß dann jedoch

lim Q0 =  lim =  0
?—>0 9—K) öq

angenommen werden, da Ableitungen von Q0 ver­
nachlässigt sind 5.

3 S. M a n d e l s t a m ,  Proc. Roy. Soc. London A 233, 2 4 8  [ 1 9 5 5 ] .
4 S ieh e  J. Goldstein, P h ys. Rev. 91, 1516 [1953], ferner S. 

M andelstam, 1. c. 3 und P roc. R oy. Soc. L ondon A 237, 496
[1956]. Ä h n lich e V erh ältn isse  liegen  für d ie  DiRAC-Glei- 
chung vor: K. M. Case, P h ys. Rev. 80, 797 [1950]. M anch­
m al hab en  P o le , d ie  von verletzten  Sym m etrien  herrühren  
(sog . „GoLDSTONE-Teilchen“) , d iese  E igenschaft, s. M. Ba­

k e r ,  K. J ohnson u. B. W. L ee, P h ys. Rev. 133, B 209 [1964]
und K. J ohnson, n icht veröffentlicht.

5 Wenn der kanonische Vertauschungsausdruck für yj keine 
c-Zahl ist, muß in allen Formeln Q0 ökm durch 

7o ö ( t k - t m ) < 0 ! T{xpk , v m }  U | 0 > • V - 1 

ersetzt werden.
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Zur Illustration schreiben wir die untersten Glei­
chungen des Systems an. Für die Zweipunktfunktion 
erhält man

<5
D k l  +  £o 9 kl +  i V  kr, ls G sr + 6qr Glm — J?0 ^km • 

(19)

Durch Einsetzen von (10) kann die Gleichung in 
eine Beziehung zwischen G  und F  (oder T  etc.) um­
geschrieben werden. Für diese Größen kann man 
dann durch Differentiation von (19) weitere Glei­
chungen bekommen. Wir schreiben das System für 
G  und L  aus (14) an:

( D k l  4" Qo 9 k l  4* i V k r ,  js  (2 & jl G sr L js> ir ) ) G im — Oq Ö};m j 

(Dkl +  f?o 9ki) L>ib, na 4" 2 i Vkr,  is ( G sr Lib ,  na 4~ &ln L s b , ia)

+  i V , kr, ls
8U's, nr
8qab

— Lj'ls, ir na j — 2 I Vkr,  ln &la

(20)

(21)

Der Faktor 2, der in (20) im V ergleich zu (19) 
auftritt, hängt mit der Tatsache zusam m en, daß L  

aus der K orrelationsfunktion r] gew onnen wurde. 
D aher tritt im W ediselw irkungsterm  nicht nur der 
HARTREE-Term [w ie z . B .  in (1 9 )] , sondern auch 
der FocK-Term auf, der hier w egen der Sym m etrie­
eigenschaft (3 b) m it dem HARTREE-Term identisch  
ist.

IV. Äquivalenz von Theorien mit Fermi- 
und Yukawa-Kopplung

Wie von mehreren Autoren bemerkt wurde 6, sind 
Theorien wie die hier betrachtete unter gewissen 
Umständen weitgehend äquivalent zu solchen wech­
selwirkender B o s e - und Spinorfelder mit Y u k a w a - 

Kopplung der BosE-Felder an die Fermionenströme. 
Da dieser Zusammenhang wichtig erscheint, soll er 
hier aufgezeigt werden.

Wir definieren eine Größe a î durch

a k i =  Qo 9kl 4- i Vfa, is G s r . (22)

Dann ist wegen (10) 

öaki
öqp — QO ^ k p  ^lq  4" i  V kr ,  Is F sq , rp — D k q ,  lp (23)

Nun eliminieren wir die Ableitung nach q, indem 
wir alle Größen als Funktionale von a auffassen:

<5 _  ddpq 8 j j  8 
8qrs 8qrs 8aPq ps,Qr 8apq ’

Wir gehen von (19) aus und schreiben für

(24)

8G[n
=  — Gu'

8G[
8qr 8apq

Definieren wir nun einen neuen Vertex durch

4 ^ -  -?» .« « ■  (25)8aab

so wird (19)

(Djil 4“ dk l  i  V kr ,  is G i j  DpSt qr Yjq, lp) G j m =  Oq $km  •

(26)

Diese Gleichung ist vollkommen analog zu der ent­
sprechenden Gleichung einer Boson-Fermion-Theorie 
mit YuKAWA-Kopplung (in einem äußeren B o s e - 

Feld), wobei in letzterer der Vakuumerwartungs­
wert des BosE-Feldoperators (der bei Anwesenheit 
eines äußeren Feldes nicht verschwindet), D der 
Bosonpropagator und y der Fermion-Boson-Vertex 
ist. Für die Elektrodynamik lautet die entsprechende 
Gleichung z. B.

[i 3/i — m +  e0 y  ̂( A u) -  i e0 y  ̂ G  jTv] G  =  <5.

Die Identifizierung von D als Propagator ist auch 
in unserem Fall gerechtfertigt, wenn F  im Impuls­
raum Pole in k2 hat, denn diese Variable entspricht, 
wie man sich durch FouRiER-Transformation von 
(23) überzeugt, gerade dem Impuls des transpor­
tierten „Bosons“ . Die Diskussion der Äquivalenz 
läuft also auf den Nachweis der entsprechenden Pole 
hinaus. Die Kopplungskonstanten sind im Prinzip 
aus (26) zu berechnen. Wenn F  bekannt ist, kennt 
man auch y, denn diese Größe kann (wenigstens im 
Prinzip) durch Vergleich von (12) mit (25) unter 
Verwendung von (24), (23) und (11) berechnet 
werden.

6 I. B ialynicki-B irula, Phys. Rev. 130, 465 [1963] u. 
Rochester Report URPA-11 [1963]. — J. D. B jorken, 
Ann. Phys. N. Y. 24, 174 [1963]. — G. S. G uralnik, Phys. 
Rev. 136, B 1404 u. B 1417 [1964]. — Die letzteren bei­

den Autoren betrachten Theorien mit entartetem Vakuum. 
Siehe auch ältere Versuche von B. J o u v e t , N u o v o  Cim. 5, 1
[1957]. — P. G. O. F r e u n d ,  Acta Phys. Austr. 14, 445
[1961].
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In der zur Feldgleichung (5) gehörigen klassi­
schen Theorie würde man in üblicher Weise auf die 
Existenz von lokalen Strömen schließen können, die 
aus Feldoperatoren am selben Ort bilinear gebildet 
sind:

/ “ (x) =  xp (x) O  Bip(x)  (27)

( O  B ist dabei ein aus den Matrizen der Theorie ge­
bildeter A usdruck7) und als Konsequenz der Feld­
gleichung einer Kontinuitätsgleichung genügen:

3 “ ju =  0 . (28)

In der Quantentheorie ist diese Schlußweise wegen 
der Singularität des Produktes von Feldoperatoren 
am selben Ort nicht zulässig. Man sieht jedoch, daß 
die Frage der Existenz lokaler Ströme mit der ge­
nauen Form des in (5) auf tretenden Produktes zu 
tun hat. Von der Physik her gesehen ist nur die Exi­
stenz eines einzigen lokalen Stromes (des elektro­

V. Eichinvarianz und lokale Stromerhaltung magnetischen) gesichert. Ob der zweiten absolut er­
haltenen Ladung (der Baryonenzahl) in derselben 
Weise wie der elektromagnetischen ein lokaler Strom 
zugeordnet werden kann, ist zweifelhaft. Für die nur 
näherungsweise erhaltenen Größen (wie z. B. den 
Isospin) erscheint eine solche Annahme nicht sinn­
voll. Unabhängig von dieser Problematik ist aber 
die Frage interessant, wann eine durch eine Vor­
schrift für das Produkt am selben Ort gegebene 
Theorie des hier betrachteten Typus einen lokalen 
Strom enthält. In diesem Abschnitt soll daher an­
genommen werden, daß dies der Fall ist, und es sol­
len die Konsequenzen der Annahme für die G r e e n - 

schen Funktionen untersucht werden. Diese Kon­
sequenzen sind für eine — exakt oder näherungs­
weise — vorgegebene Theorie einfacher zu über­
prüfen als die Operatorbeziehung (28). Besteht man 
im Rahmen einer Näherung darauf, sie Schritt für 
Schritt zu erfüllen, so kann man auch über mögliche 
Produktbildungen Aussagen machen, da dann jeden­
falls das in (28) auftretende Produkt erklärt ist.

Wir betrachten die spezielle Quelle
Xk

q*l=C>- B A l  /(*<*) _*<«) exp j i J df» A\  (f)  B ] (29)
Xi

und die Eiditransformation
ip(x) -*■ eü(;r)sxp{x), A% ( x ) A %  (x) +  df ,X(x) .  (30)

Der Quellterm qkitylWk ändert sich bei (30) nur um  die Divergenz des Stromes
cc~\~ zj 2

y>(x) =  /  xp(x +  z/2)  O Z?exp{» /  d |e /4 e (|)  B } i p ( x  — z/  2) f (z )  d4z . (31)
* - 2/2

Setzt man daher die Änderung von V bei (30) Null, so erhält man eine Beziehung, die dem Erhaltungssatz 
(28) für diesen Strom äquivalent ist. Bevor wir diese Variation berechnen, sollen noch einige Bemerkun­
gen zu den in (29) auftretenden Größen gemacht werden.

Die invariante Funktion /  ist als Ausschmierungsfunktion zu verstehen, die wegen der singulären Natur 
des Produktes der Feldoperatoren eingeführt wurde. Formal folgt (28) aus der zu (5) gehörigen L a g r a n g e  - 
Funktion nur für streng lokales /. Über die genaue Form von / Angaben a priori zu machen, erscheint 
riskant: eine (5-Funktion, die zu (27) zurückführt, wäre sicherlich zu naiv. Es können kompliziertere Limes­
bildungen nötig sein. Eine schon vor längerer Zeit untersuchte und neuerdings wieder diskutierte Möglich­
keit 8 wäre z. B.

f (z )  =  lim d (z — e) , (32)
£->0

wobei der Limes möglichst spät (z. B. nach Ableitung der Gleichungen für die GREENschen Funktionen) 
zu bilden ist. Eine wirklich saubere Bestimmung von /  ist nur zusammen mit der am Schluß von Abschn. I 
formulierten Konsistenzbetrachtung möglich.

7 Für die Kopplung (3) hätte man zwei Ströme O ß  =  o.“ -1 8 P. A. D i r a c ,  Proc. Cambridge Phil. Soc. 3 0 ,  150 [1934]. — 
bzw. =  t  die als Baryonen- bzw. Isospinstrom zu W. H e i s e n b e r g ,  Z. Phys. 9 0 ,  209 und 9 2 ,  692 [1934]. — 
interpretieren wären. J. G. V a l a t i n ,  Proc. Roy. Soc. London A 2 2 2 ,  93 und 228

[1954]. — J. S c h w i n g e r ,  Phys. Rev. Letters 3 ,  296 [1959].
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Die Größe A £ ist als äußeres („klassisches“ ) Feld zu interpretieren. Die Annahme, daß es so ein Feld 
gibt, ist (sofern es einen erhaltenen Strom gibt) wohl unproblematisch, da es nur als formales Hilfsmittel 
dient. Weniger klar ist schon, ob im Exponenten von (29) wirklich A, t stehen muß oder ob man in (31) 
ein aus Feldoperatoren xp geeignet aufgebautes „inneres“ Feld A u einzusetzen hat [das natürlich die rich­
tige Eicheigenschaft (30) haben m uß]. Im letzteren Fall wäre der Strom kein bilinearer Ausdruck mehr, 
und es wären auch noch an anderen Stellen Modifikationen nötig. Der Einfachheit halber soll hier ange­
nommen werden, daß man mit A £ auskommt [oder, was wohl gleichwertig ist, daß Aft im Exponenten von
(31) durch seinen Vakuumerwartungswert ersetzt werden darf].

Wir berechnen nun die durch eine infinitesimale Transformation (30) bewirkte Änderung von V. Sie 
setzt sich zusammen aus der durch die Transform ation der xp verursachten Änderung

öv V =  (0 I T U exp i [ q ki( iXiB xpt xpk - i l k xpixpk B) + . . . ]  | 0) — (0 | T U | 0)

=  ~ { 0 \ T V q u ( X , B V l xpk - l k V i V k i ) \  ) “ M s t  ® ) J F ’

ß = C„ß‘ C„, C p B  — B Cf , ,

und der durch die Änderung der Quelle bedingten V ariation

i ,  V -  =  J d \ k) d%> ~  C11 B f(x(k) - * « ,)  3 ,  A ( 3 & p > ) .

Setzt man die gesamte Änderung von V Null SV =  SV V + S QV =  0 ,

so erhält man nach einmaliger partieller Integration und Einführung der Schwerpunkts- und Relativkoordi­
naten

~  ^ (•*"(&) ”1“ (̂1)) 5 Z =  %(k) %(l) 

durch Koeffizienten vergleich bezüglich X die Beziehung
/  JS \  /  X ~ \

V .  (33)

Division durch V zeigt, daß dieselbe Relation auch für ln V gilt.
Diese Beziehung erzeugt ein unendliches System von Beziehungen zwischen den GREENschen Funktionen, 

die sogenannten W a r d —TAKAHASHi-Identitäten 9, die dem Erhaltungssatz (28) äquivalent sind. Zur Illustra­
tion geben wir die untersten beiden Relationen an. In nullter Ordnung bezüglich q erhält man die Kon­
tinuitätsgleichung für den Vakuumstrom

d ,u (x m) Sp C ^ B J  S (*(*), ar(ö) f (z )  d4z = 0 .  (34)

In erster Ordnung erhält man

i ( ö mr{B S ) rs- d ms(SB)rs)  =  (C't B ) kidf , (m)  f  f (z)  Frl>sk d4z | ff=0 . (35)

Diese als verallgemeinerte WARD-Identität bekannte Beziehung kann auch als Relation zwischen S -1  und T  
geschrieben werden:

( S „ ( B B )  „)  -  ( C 'B ) «  i -  3 A m)  [  d ‘z  f ( z )  r „ , lk (36)

Für eine vorliegende Näherungslösung können Ausgangsgleichung (5) verträglich sein, wenn die
die W a r d —TAKAHASHi-Identitäten, z .B . (3 6 ), stets Identitäten mit nicht zu stark nichtlokaler Ausschmie-
nachgeprüft werden. Die Näherung wird nur dann rung erfüllt sind, so daß die verbleibende Inkonsi-
mit der Existenz eines lokalen Stromes und mit der stenz auf die Definition des Produktes von Feld-

9 Diese Relationen wurden in der Feldtheorie bisher nur für retisch gefunden: J. C. W a r d ,  Phys. Rev. 78, 182 [1950].
lokal aufgebaute Stromausdrücke diskutiert, vgl. Y. T a k a - Die erste allgemeine Untersuchung von Bedingungen für
h a s h i , Nuovo Cim. 6, 370 [1957], Ein Spezialfall von (28) Matrixelemente, die aus dem Erhaltungssatz (28) folgen,
wurde für die Elektrodynamik schon vorher störungstheo- stammt von G. K ä l l e n ,  Helv. Phys. Acta 26, 755 [1953].
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operatoren am selben Ort geschoben werden kann. 
Man hätte dann im Sinn des am Ende von Abschn. I 
formulierten Konsistenzproblems die Rechnung so­
lange mit einer durch Einbeziehung von /  veränder­
ten LAGRANGE-Funktion zu wiederholen, bis volle 
Konsistenz vorliegt. Die in diesem Abschnitt studier­
ten Identitäten können also nicht nur Aufschluß über 
die Konsistenz von Näherungen, sondern auch über 
die Struktur der Theorie bei kleinen Abständen 
geben.

Aus der obigen Ableitung folgen die Beziehungen
(32 ), (33), (34) nur dann, wenn der Grundzustand 
bei der Transformation (30) invariant bleibt. Für 
Theorien mit entartetem Vakuum ist dies nicht mehr 
der Fall. Formal hätte man in ÖV noch die Variation 
einzuschließen, die durch die Transformation des 
Vakuumzustandes bedingt ist. Dies führt jedoch da­
zu, daß SV identisch Null wird und gibt daher keine 
einschränkende Relation für V. Dies bedeutet jedoch 
nicht notwendig, daß bei entartetem Vakuum keine 
WARD-Identitäten gelten.

V I. M assenoperator, Bethe-Salpeter-G leichung

W ir versuchen, für G_1 einen expliziten Ausdruck 
zu erhalten, indem wir (19) in der Form

(D +  Qo q +  M ) ki Gim =  Ekm

schreiben. Wenn (19) gilt, ist natürlich

Ekni =  {?0 ^ km •

(37)

(38)

Der so eingeführte Massenoperator kann dann leicht 
durch G und eine der Vierpunkfunktionen ausge­
drückt werden. Es gilt z. B.

M m =  i V  kr, ns (2 Gsr 3 ni Lns> ir)

— i  V kr, ns { G sr  ^nl '̂nm Ems, Ir) •
(39)

Wir fassen nun M  als Funktional von G (und q) 
auf. Aus (21) sehen wir, daß M nur über G von q 
abhängt. Dies ist auch verständlich: M  hängt von 
den höheren GREENschen Funktionen ab, die über 
das ganze System wieder von G abhängen. Es ist 
daher

öMklÜMkl ■ V ÖGrs (A() \
i ----- =  l& ks , lr  s a )
oqpq QQpq

mit i K-ks, ir —
ÖGr

(40 b)

Durch Differentiation von (37) nach q kann man 
daher eine Gleichung für eine Vierpunktfunktion er­
halten 10

Efil Elp , mq — Po G)iq G pm i  G]tk K-kj, li G i m Eip , jq •
(41)

In einer kanonisch quantisierten Theorie ist E der 
Einheitsoperator, und man erhält die bekannte Form 
der Gleichung. Wenn es Bindungszustände gibt, so 
daß die Bilinearentwicklung (16) gilt, dann erfüllt 
jeder Term der Bilinearreihe (jede „Wellenfunk­
tion“ ) die homogene Gleichung

Eih <phj(p, k) =  -  Gik (p +  k/2)  (42)

* j  (2 ?t) 4 K k s ’ l r ( P ’ q  l Ä) G u ( P ~ k / 2 ) < P r s ( q , k ) .

Definiert man eine homogene Boson-Fermion-Vertex- 
funktion durch

<Pij(p,k) =  -  Gik(p +  k / 2 ) y f i ( p  +  k / 2 , p - k / 2 )  

• C « ( p - * / 2 ) ,  ®  ( 4 3 )

so erfüllt auch diese die homogene B e t h e —S a l p e t e r - 

Gleichung. Die Emission des gebundenen Teilchens 
wird dann durch die Lösung der zugehörigen in­
homogenen Gleichung (inhomogene Vertexfunktion) 
beschrieben, die an der Stelle k2 = M 2 einen Pol hat. 
Die Kopplungskonstante ist das Residuum dieses 
Poles, also im wesentlichen der Wert des Vertex auf 
der Massenschale ( y p )  = m ,  k2 =  M n2.

Gl. (42) kann für die anderen Vierpunktfunktio- 
nen umgeschrieben werden. Für die Korrelations­
funktion ist der inhomogene Term komplizierter. 
Hingegen ist die Gleichung für T besonders einfach

Eij T jk , Im ~  K-ik, im i K ir, is Gsp Gqr Tyk, qm • (44)

Bei gegebenem K  ist dies, ebenso wie (41), eine 
lineare Integralgleichung für die Vierpunktfunktion. 
Kennt man die funktionale Abhängigkeit des Mas- 
senoperators M  von G, so kann K  durch Differentia­
tion berechnet werden (dabei ist natürlich G vor der 
Differentiation als willkürliche Funktion zu betrach­
ten). Die tatsächliche Form dieser Abhängigkeit ist 
durch die Dynamik, d. h. den Wechselwirkungs­
ausdruck bestimmt. Der Sinn der Einführung von 
M [ G ] und der dadurch virtuell durchgeführten 
Auflösung des unendlichen Gleichungssystems der 
GREENschen Funktionen nach G besteht darin, daß 
eine der Struktur von Vik,im entsprechende Abhän­
gigkeit wenigstens näherungsweise angegeben wer­
den kann. Dies wird später gezeigt werden.

10 J. S c h w in g e r , Proc. Nat. Acad. S e i .  US 37, 452 [1951]. — 
E. E. S a l p e t e r  u . H. A. B e t h e , Phys. Rev. 84, 1232 [1951].
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Das hier skizzierte Verfahren der Elimination der 
Funktionalableitung durch Auflösung kann noch 
weiter fortgesetzt werden: es ist möglich, auch noch 
K  gänzlich zu eliminieren, so daß man eine einzige, 
sehr komplizierte Gleichung übrig behält, die nur 
G, T und seine Ableitungen nach G enthält und 
nichtlinear ist. Die Struktur von Näherungsverfah­
ren erscheint mit Hilfe dieser Gleichung durchsich-

(D +i?o q) kl L ib' na + 2  i Vkr, ls ( G s r  Elb , na “t- ^ln

i Vkr, Is List ir L i b t na i Vkr, ls ( Gpa Öjb +

tiger (siehe 2). Wir ziehen es vor, diese Prozedur 
an L statt T durchzuführen. Setzen wir in (21)

ÖLls.jnr __ öLis Lnr ÖGpq
8(}ab 8Gpq dqaf) (4o)

—  _  §Lls,nr ( r  X t \ n  ßq  \'-rpa'-'jb L‘pb,ja)

so ist ö/dq  ohne Einführung von K  eliminiert: die 
entstehende Gleichung für L ist

'ir Esb, ia)

ia) G „  = 2 i  Vkr, „  Gia Gl r . («>)
O l r p q

Diese Gleichung ist im Prinzip zusammen mit (20) 
zu lösen. Das System ist wesentlich einfacher als das 
aus (37) und der entsprechenden Gleichung für T 
bestehende. Ebenso wie dieses letztere oder das Sy­
stem (37), (41) mit (10) und (40) kann auch das 
Gleichungspaar (20), (46) als Basis eines iterativen 
Näherungsverfahrens dienen.

Bei kritischer Betrachtung von (37) — (44) ist 
ersichtlich, daß diese Gleichungen an mehreren Stel­
len den Faktor £>0 enthalten. Wenn o0 endlich ist, 
ist dies bloß ein Schönheitsfehler. Durch die Substi­
tution

v  =  /2=  —  Z'2, q = — q (47)
Qo Qo

kann die Theorie in eine kanonisch quantisierte ver­
wandelt werden, denn die gestrichenen Größen er­
füllen dieselben Beziehungen wie die ungestrichenen 
mit oQ =  1. Dieses Verfahren ist jedoch für o0 =  0 
oder oo problematisch. Wir ziehen es deshalb vor, 
in den weiteren Abschnitten ,£>0 (bzw. E) mitzuneh­
men.

Bei nichtkanonischer Quantisierung (,o0 =  0) ist 
{D +  o0 q +  M) nicht mehr das Inverse zu G. Durch 
Anwendung dieses Operators auf (41) oder (42) 
kann man zwar auch in diesem Fall eine (differen­
tielle) B e t h e —SALPETER-Gleichung gewinnen. Diese 
hat jedoch nicht nur eine unhandliche, weil unsym­
metrische Form: infolge des Fehlens eines inhomo­
genen Terms sowohl in ihr als auch in (37) sind 
die üblichen Näherungsverfahren zur konsistenten 
Lösung des Systems nicht anwendbar. Die Einfüh­
rung des Massenoperators erscheint daher nicht sinn­
voll. Ein anderer Ausweg wäre der, daß man auf
(38) verzichtet: da man M  jedenfalls nur näherungs­
weise angeben kann, wäre es möglich, daß (38) zwar 
exakt, nicht aber näherungsweise erfüllt ist. Man

hätte dann Näherungen für M und E so anzugeben, 
daß alle betrachteten Gleichungen mit möglichst klei­
nem Fehler erfüllt sind, wobei geeignete Kriterien 
für die Kleinheit des Fehlers definiert werden müs­
sen. Ein solches Verfahren wurde von H e is e n b e r g  1 

vorgeschlagen und ist zur Berechnung von Massen­
eigenwerten geeignet. Für die hier betrachteten Kon­
sistenzfragen kommt es jedoch weniger darauf an, 
einen analytischen Ausdruck für M anzugeben, der 
in der Umgebung spezieller Werte von p2 (z. B . in 
der Nähe von Masseneigenwerten) zu einer guten 
Näherung für S -1 führt, sondern wir sind an der 
funktionalen Abhängigkeit M [ G ] interessiert (und 
zwar sogar für beliebige G, da nach G funktional 
differenziert werden m uß). Wenn das Problem die 
Frage ist, ob o0 = 0 konsistent ist, darf aber diese 
Bedingung nicht vom gewählten Näherungsverfahren 
abhängig gemacht werden. Man könnte in der Tat­
sache, daß bei bisher vorgeschlagenen Realisierun­
gen nichtkanonischer Zweipunktfunktionen 11 der in­
verse Propagator nicht durch einen Differentialaus­
druck erster Ordnung gegeben ist, einen Hinweis 
darauf erblicken, daß für diesen Fall (37) bzw. (41) 
kein günstiger Ausgangspunkt ist. Möglicherweise 
ist daher für nichtkanonische Quantisierung das von
(20), (46) ausgehende Verfahren vorzuziehen, das 
eine Alternative zu den oben erwähnten Näherungen 
für M  darstellt. Im Gegensatz zur B e t h e —SALPETER- 

Gleichung enthält die Gleichung für L auch für
o0- ^ 0  einen inhomogenen Term [die rechte Seite 
von (4 6 )] , so daß iteriert werden kann. Der höhere 
Komplikationsgrad muß allerdings in Kauf genom­
men werden.

11 Dies sind die Dipolgeist-Regularisierung, die insbesondere 
in 1. c . 1 ausführlich diskutiert wird, und die Regularisie- 
rung durch asymptotische Skaleninvarianz: H. M it t e r , 
Nuovo Cim. 32, 1789 [1964].
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VII. Symmetrieverletzung und Goldstone- 
Teilchen

Bei vielen quantenmechanischen Problemen ist 
der Grundzustand weniger symmetrisch als die Be­
wegungsgleichung. Für die Feldtheorie würde dies 
bedeuten, daß der Vakuumzustand nicht bei allen 
Transformationen, die (1) invariant lassen, unge- 
ändert bleibt. Diese Symmetrieverletzung hat in der 
Elementarteilchentheorie Bedeutung erlangt, da sie 
es ermöglicht, einen Teil der in der Natur beobach­
teten exakten oder approximativen Symmetrien auf 
Eigenschaften des Vakuums abzuwälzen und da­
durch mit einfacheren Feldgleichungen auszukom­
men. Im allgemeinen resultiert als Konsequenz das 
Auftreten von Polen bei der Ruhemasse N u ll12. Die 
Frage, ob diese Pole als physikalisch brauchbare Zu­
stände (Teilchen) interpretierbar sind und welche 
Eigenschaften sie haben, ist für die Theorie von 
Wichtigkeit. Im Anschluß an die im vorigen Ab­
schnitt verwendeten Methoden kann eine Formulie­
rung dieses Problemkreises angegeben werden, die 
für die Klärung dieser Frage, auch im Rahmen von 
Näherungen, besonders geeignet erscheint13.

Wir nehmen an, daß die zur verletzten Symmetrie 
gehörige Gruppe eine Eichgruppe erster Art ist und 
studieren daher eine Transformation (30) mit kon­
stanter Phase

ip —> eaB xp . (48)

Außerdem nehmen wir an, daß die im Massenope- 
rator vorliegende Abhängigkeit von G die Symmetrie 
erhält. Dieser Sachverhalt wird immer vorliegen, 
wenn diese Abhängigkeit in systematischer Weise 
gewonnen wird, denn sie entspricht dann im wesent­
lichen der Struktur des Wechselwirkungsausdruckes
^ ih, Im •

Wir berechnen die durch (48) bewirkte Änderung 
von G und variieren (37) :

ÜMjcl Gim +  ( D  +  Oq q  +  M )  hl ÖGim =  0 .
Infolge der Symmetrie von M  [G] erfolgt die Än­
derung von M  nur durch G

t U u - ^ » G u - i K kl, Hi G v .
O&ij

12 J .  G o l d s t o n e , N u o v o  Cim. 19, 154 [I960]. —  J .  G o l d s t o n e , 
A. S a la m  u . S .  W e in b e r g , Phys. Rev. 127, 965 [1962]. — 
S . B l u d m a n  u . A. K l e in , Phys. Rev. 131, 2364 [1963].

13 Diese Betrachtungsweise wurde von J o h n s o n  im Zusam­
menhang mit elektrodynamischen Problemen verwendet 
(mündl. Mitteilung, siehe auch M. B a k e r  et al., 1. c. 4) .

14 Zur N orm ierung von L ösu ngen  der BETHE-SALPETER-Glei- 
chung m it H ilfe  e ines E rh altun gssatzes für den Strom

öG erfüllt daher die Gleichung

(D +  q0 q +  M) ki ÖGim +  i K kjt n Gim ÖGij =  0 (49) 

oder anders geschrieben

E/Il ÜGlm =  — 1 Ghh Khj, li Glrn &Gij . (50)

Durch Transformation in den Impulsraum sieht man, 
daß

j dGiS =  i { B G - G B ) i} (51)

eine spezielle L ösung < p \f  (p , 0) der hom ogenen  
BETHE-SALPETER-Gleichung (42) zur Energie N ull 
ist

Ehi <55 (p) hi =  - i  Shk (p) (52)

• j* p a ) *  Kkj’ li P̂’ q I Slm^  '

Wenn das Vakuum bei der Transformation (48) in­
variant ist, wird diese Gleichung trivial erfüllt, denn 
dann verschwindet öS. Das macht man sich am besten 
an einem Beispiel klar: für gebrochene y5-Invarianz 
ist z. B. öS im wesentlichen der Antikommutator 
von S mit y5 , der bei invariantem Vakuum ver­
schwindet.

Wenn die Symmetrie durch den Grundzustand 
verletzt wird, ist <p^ =  (1/A) öS eine nichttriviale 
Lösung. Es ist dann zu untersuchen, ob diese Lö­
sung als Wellenfunktion eines Teilchens interpretiert 
werden kann. Zunächst muß dazu die Frage beant­
wortet werden, ob wirklich zur Masse Null 
(A;2 =  0) gehört. Wenn cp^ die Gleichung nur für 
k u =  0, nicht aber für k u 4= 0, k2 =  0 löst, ist es als 
Wellenfunktion eines Spurions zu interpretieren, das 
keine L o r e n t z -Eigenschaften hat (es transformiert 
sich bei LoRENTZ-Transformationen wie das Vakuum). 
Wenn es erlaubt ist, die Integralgleichung (52) durch 
Rotation der g0-Achse in eine Gleichung im euklidi­
schen Raum zu transformieren, folgt aus der Lösbar­
keit für k u =  0 diejenige für k2 =  0 und es liegt kein 
Spurion vor. Als nächstes ist dann zu entscheiden, 
ob die mit der zu (42) gehörigen Vorschrift gebil­
dete Norm 14 von <p^ (es handelt sich im wesent­
lichen um das Quadratintegral von S'<p^ )  endlich 
ist. Wenn dies nicht der Fall ist, hat man es mit

siehe K .  N i s h i j i m a ,  Progr. Theor. Phys. 12, 279 [1954] 
u. ibid. 13, 305 [1955], S. M a n d e l s t a m ,  1. c. 3, A. K l e i n  u .
C .  Z e m a c h ,  Phys. Rev. 108, 126 [1957]. — Eine andere 
Methode, die ohne Erhaltungssatz auskommt, stammt von 
R. E. C u t k o s k y  u. M .  L e o n ,  Phys. Rev. 135, B 1445 [1964]. 
— Für eine ausführliche Diskussion des Falles k* = 0 siehe 

N .  N a k a n i s h i ,  Phys. Rev. 138 B, 1182 [1965].
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einer anomalen Lösung zu tun (vgl. Abschnitt II, 
insbes. 4) . Mitunter ist in diesem Fall die zugehörige 
inhomogene Vertexfunktion nicht nur für k2 =  0, 
sondern auch für endliche k2 singulär (siehe B aker 
et al., 1. c. 4). Es erhebt sich die Frage, ob die Exi­
stenz anomaler Lösungen eine Eigenschaft der Nä­
herung oder davon unabhängig ist. Neue Untersu­
chungen 14 machen letzteres wahrscheinlicher. Ist die 
Norm jedoch endlich, so handelt es sich um ein ech­
tes Teilchen. Seine Kopplungskonstante kann, wie 
im vorigen Abschnitt angedeutet wurde, aus der ent­
sprechenden Vertexfunktion berechnet werden. Man 
sieht, daß die hier angedeuteten Überlegungen für 
einen (z. B. näherungsweise) gegebenen Kern K  
wirklich durchführbar sind.

V III. E xak te  form ale Lösung

Mit H ilfe der hier verwendeten Funktionalm etho­
den läßt sich sogar ein geschlossener Ausdrude für 
die Transform ationsfunktion V [siehe (6 ) ] ange­
ben, der de facto die form ale Sum m ierung der Stö­
rungsreihe darstellt. Man gewinnt ihn durch V er­
gleich des Ausdruckes für V in den W echselwir­
kungsbildern bezüglich der Nichtlinearität und be­
züglich der K opplung an die Quelle. Seien die ent­
sprechenden LAGRANGE-Funktionen

L q =  qitl V k l  Wk » =  \ y ,kl, rs Wk Wl Ws Wr j

so ist, wenn wir die Anwesenheit der Quelle durch Q, 
die der Nichtlinearität durch W andeuten,

V =  (out | in}Q,w =  -Tr (out | T elLa | in
N 'W (53)

=  ^ 7  < o u t | r  eiLw | in ) q ,

wobei die Normierungsfaktoren die Transformations­
funktionen ohne Quelle bzw. ohne Nichtlinearität 
sind

N  =  (out | in )w , N'  =  (out | in)Q . (54)

Entwickeln wir nun V in der ersteren Darstellung 
nach Potenzen von /2 und vergleichen mit der zwei­
ten Form, so sehen wir

v - ^ + p [ w ) ^ + -
_L /V '+ ± V kl
N' l 2 ’

=  —  (N' +N’ l

—  — V ) + . . .
KÖqks Sqir ) f  = o

— Vi.i S ö N' 4-0  v kl, rs c c i • •2 öqks oqir

Durdi Summation erhält man
8

ÖQks üqir
N'. (55)

Damit ist V auf die Transformationsfunktion N'  
einer Theorie ohne Wechselwirkung, aber mit Quel­
len zurückgeführt. Da die GREENschen Funktionen 
durch funktionale Differentiation aus V gewonnen 
werden können, sind sie durch die entsprechenden 
der freien Theorie (mit Quellen) ausdrückbar. Die 
letzteren sind aber mit Hilfe der Zweipunktfunktion

WO-fl’) _  5 ln N '
W e -----t-----

oqik

als SLATER-Determinanten darzustellen, z. B.

(56)

"(0,9)
(?£;?> O'»;«
ftiO.q) Q(0,q) 

im J ln
(57)

Alle GREENschen Funktionen der wechselwirkenden 
Theorie können also im Prinzip durch die Zwei­
punktfunktion (56) ausgedrückt werden. Für V lau­
tet dieser Sachverhalt15

det(l +  f>0' q G(°)) (58)

•exp l y  o o
2 kl’ TS Öqkt dqir

d e t( l +Q0' q G W )

Dabei ist der Propagator eines freien Teilchens 
(ohne Quelle)

GW =  ( D - ' ) U . (59)

ist das erste Spektralmoment von (56) und die 
Multiplikation bei der Determinantenbildung schließt 
(im Sinne des in I eingeführten Matrizenkalküls) 
Raumintegration und Spin- bzw. Isospinsummation 
ein.

Die exakte Lösung (58) ist im allgemeinen für 
praktische Rechnungen zu kompliziert. Sie kann je­
doch zum Nachweis von allgemeinen Eigenschaften 
der GREENschen Funktionen dienen. Die Störungs-

Eine explizite Berechnung von N' für eine lokale Quelle, 
die auf den hier vorliegenden Fall sofort übertragbar ist, 
findet man bei J. S c h w i n g e r , The Theory of Coupled Fields, 
Harvard Lecture 1954 (unveröffentlicht), dem wir auch in 
den übrigen Ableitungen dieses Abschnittes folgen. Siehe 
auch Y. K a t a y a m a , Progr. Theor. Phys. 7, 205 [1952] ;

K. Y a m a z a k i, ibid. 7, 449 [1952] ; S .  H o r i , ibid. 7, 578 
[1952] ; S . F .  E d w a r d s  u . R .  E .  P e ie r l s , Proc. Roy. Soc. 
London A 224, 24 [1954] ; K. S y m a n z ik , Z. Naturforschg.
9 a, 809 [1954] ; I. M. G e l f a n d  u. R .  A. M in l o s , Dokl. 
Nauk U S S R  97, 209 [1954] ; E .  S .  F r a d k in , ibid. 98. 47 
[1954].
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reihe erhält man durch Entwicklung der Exponen­
tialfunktion. Wenn man als Modell eine Theorie 
im zweidimensionalen Raum betrachtet, kann (55) 
sogar explizit ausgewertet werden 16, da der Propa­
gator (56) dann eine einfache Form hat.

Unklar ist an der obigen Formulierung noch, wel­
che Quantisierung g0' man in N' bei nichtkanoni­
schem ,Q0 zu verwenden hat. Da es sich um eine freie 
Theorie handelt, wäre a priori kein Grund dafür 
vorhanden, die kanonische Quantisierung abzuleh­
nen. Die Entwicklung des Exponentials in (55) bzw. 
(58) führt dann Term für Term auf eine kanoni­
sche, aber divergente Theorie. Ob die Summierung 
beide Tatsachen ändert und den radikalen Unter­
schied zwischen ,Q0 und Q0' herbeiführt, ist nicht 
sicher. Es wäre auch denkbar, daß man nur zu einer 
widerspruchsfreien Formulierung einer nichtkano­
nisch quantisierten Theorie gelangt, wenn man von 
einer klassischen Lösung (q0' = 0) ausgeht [die for­
male Schwierigkeit, daß dann das Argument der 
Determinante in (58) trivial wird, kann durch Be­
trachtung der GREENSchen Funktionen vermieden 
w erden]. Diese Zusammenhänge könnten an zwei­
dimensionalen Modellen studiert werden.

IX. K onsistente Näherungsverfahren

Ein mit der Existenz lokaler Ströme verträgliches 
Näherungsverfahren ist in der Theorie des Mehr- 
körperproblem s17 und in der Quantenelektrodyna­
mik 18 verwendet worden und kann auf den hier vor­
liegenden Fall übertragen werden, weist aber bei 
nichtkanonischer Quantisierung die am Ende von VI 
erwähnte Schwierigkeit auf. Das Verfahren besteht 
im wesentlichen in einer Entwicklung von M nach 
Potenzen der Wechselwirkung V ik, i,n , wobei aber M 
stets als Funktional der exakten Zweipunktfunktion 
aufgefaßt wird. Aus der Störungsreihe für M kann 
diese Entwicklung gewonnen werden, indem alle 
Selbstenergieteile summiert und durch die exakte 
Zweipunktfunktion ersetzt werden, so daß M die 
Summe über alle Skelettgraphen ist. Jedes Glied 
dieser Summe entsteht also durch Summation von 
unendlich vielen Termen der Störungsreihe. Ohne 
Bezugnahme auf die Störungstheorie kann diese Ent­
wicklung von M in folgender Weise hergeleitet wer­

16 Ch. M. S o m m e r f i e l d , Ann. Phys. N. Y. 26, 1 [1963].
17 Siehe z. B . L. P. K a d a n o f f  u . G. B a y m , Quantum Statistical

Mechanics, Benjamin Inc., New York 1962, Kap. 5.

den: Man berechnet durch Differtiation der D y s o n - 

Gleichung (37) dG/dq  und setzt dies in die durch 
Vergleich von (19) und (37) entstehende Beziehung 
zwischen M  und dG/dq  ein. So erhält man eine 
Funktionaldifferentialgleichung für M

M k l  =  2  i V k r ,  is Gsr ------- — V,kr, ns Gnm ~̂ m l . (60)
9o OQrs

Diese Gleichung wird durch eine konsequente Rei­
henentwicklung nach Potenzen von Vki,mn  iterativ 
gelöst. Die beiden ersten Terme sind

Mkl — 2 i Vkr, ls Gsr Vkr, Is Gn V iq, jp  Gpr GSq - ( - . . . .
Qo

(61)

In graphischer Schreibweise ist die Struktur klarer. 
Für die Wechselwirkung (4 b) erhalten wir

(m)  = o + C $ 3 + ***

Differenziert man die m it diesem  M assenoperator 
gew onnene Funktion G-1  nach q, so erhält man den 
zugehörigen Vertex J \  D ieser erfüllt die B eth e— 
SALPETER-Gleichung [vgl. (41)]

^  km, Iq =  ^kq &pl K.kj, U G{r Ĵ rp, sq Ggj , (62)
Qo

wobei K  eine Summe von Termen ist, die aus den 
einzelnen Summanden von M  gemäß (40 b) ent­
stehen

g j  = x + • (63)

Bricht man sowohl die Entwicklung für M  als auch 
die für K  an der gleichen Stelle ab, so erhält man 
stets ein System  von Gin. (37), (62) für G und -T, 
das die WARD-Identität (36) erfüllt, w obei aber

/ ( z )  =  ± d ( z )  ( 6 4 )

ist. Um die Theorie konsistent zu machen, hat man 
daher (vgl. S. 1511) die ganze Untersuchung mit 
einem abgeänderten Wechselwirkungsausdruck noch 
einmal durchzuführen, der diesem /  entspricht. Das 
bedeutet praktisch, daß man die „Renormierung“ 
(47) durchführt und de facto £)0 =  1 setzt. Die Kon­
sistenzforderung verbietet also bei diesem Nähe­
rungsverfahren nicht nur zu starke Nichtlokalität 
[weniger radikale Formen wie (32) sind noch zu-

18 K. J o h n s o n ,  M. B a k e r  u .  R. W i l l e y ,  Phys. Rev. 136 B ,  1111
[1964].
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lässig], sie erzwingt außerdem die kanonische Quan­
tisierung. Ohne die einzelnen Näherungen zu be­
rechnen, kann man dies auch in folgender Weise ein- 
sehen: Die WARD-Identität kann unter alleiniger Be­
nützung von (12) und der Eichkovarianzeigenschaft

Gm1 - >  exp { -  i ( 4  -  ?H) }  Gki

abgeleitet werden. Für den aus (37) mit (61) be­
rechneten Ausdruck; für G~1 ist (12) erfüllt, wenn 
der Vertex in der entsprechenden Näherung aus (62) 
berechnet wird. Die Eichkovarianzeigenschaft für G-1 
gilt ebenfalls Term für Term, aber nur, wenn ent­

weder o0= l  ist oder M m einen Term (o0 — 1) D^i 
enthält. Da in der Entwicklung (61) ein solcher 
Term nicht auftritt, führt nur ,o0 =  1 zur Konsistenz.

Das eben beschriebene Verfahren kann aber noch 
weiter verbessert werden, ohne daß die Konsistenz 
verlorengeht. Wie aus (63) ersichtlich ist, treten in 
den höheren Näherungen zu K  Glieder auf, die Ite­
rationen niedrigerer Terme sind (z. B. ist der dritte 
Term die Iteration des zweiten). Audi diese Terme 
können auf verhältnismäßig durchsichtige Weise 
summiert werden. Zu diesem Zweck schreiben wir 
Gl. (20) als Beziehung zwischen G und T

( P k l  “I-  £ o  Q kl  I  V k r ,  j s  ( ^ s r  ^ j l  ^ j n  ^ n s ,  Ir)  )  ^ Im. @0 ^ k m  ( 6 5 )

und definieren sukzessive Approximationen zu G und-T durch folgende Prozedur:

( D +<>. q)  k, + i  v kr, ls (G<;> s „  -  Gti> / ’S  J,1) =  E kh & $ ' - 1. (6 6 )

Bei gegebenem ist dies eine Gleichung für G ln\  Nach Lösung dieser Gleichung berechnen wir die
nächste Näherung zu F  mit Hilfe der durch Differentiation von (66) nach q entstehenden Gleichung

Ekh n i ) t = ,0,  Ökt » „ + i v kr, /s( -  i H c  <;> +  <%> e SS n v  -  i g ö ) .  (67)

Als niedrigste Näherung ist

I W j, = K * „  (68)

zu nehmen. Man sieht, daß in dieser Weise in jeder 
Näherung eine Gleichung vom B e t h e —S a l p e t e r -T v p

(62) für r  entsteht, deren Kern gemäß (40 b) ge­
bildet ist. Ordnung für Ordnung ist auch

erfüllt, so daß auf die Gültigkeit von (36) mit (64) 
wie oben geschlossen werden kann. Graphische Ana­
lyse zeigt, daß die niedrigste Näherung mit der ent­
sprechenden des vorherigen Verfahrens identisch ist, 
hingegen in der nächsten in K  bereits alle Ketten­
glieder („Zöpfe“ )

x £ x  +

aufsummiert sind. Man erhält somit bei Einsetzen 
des so gefundenen jT in die DysoN-Gleichung (37), 
also bei Berechnung von G ^ \  bereits die von „ge­
bundenen Paaren“ herrührenden Korrekturen zu G: 
wenn es solche Bindungszustände gibt, wird man er­
warten, daß jT 1’ die entsprechenden Pole hat.

In niedrigster N äherung ( n = l )  erhält man den 
freien Propagator, da der HARTREE-Term aus In­
varianzgründen verschw indet19. D ie Gleichung für

die Vertexfunktion ist eine Integralgleichung mit der 
symbolischen Lösung

A D  - ______ 1______ .
1 - F S d )  SW V

Die Lösung kann sogar explizit angegeben werden, 
da die Gleichung für F (im Impulsraum) wegen 
der Lokalität der Wechselwirkung eine algebraische 
Gleichung ist. Die Lösung enthält jedoch Divergen­
zen, denn die in ihr auftretende charakteristische 
Größe

V S S V ~ H p , ( k )  O
~ S p  j  Q** S (p  +  k/2)  Qv S (p  — k/2)  d4p

ist divergent. D ie WARD-Identität ist erfüllt, wenn  
(64) gilt und außerdem Hftr transversal ist

/ / „ , ( * ) -  ( g « v -  * (* * )•

Diese Bedingung ist wegen der starken Divergenz 
des Integrals nicht erfüllt. Wenn man daher ein ge­
fährliches Verfügen über divergente Ausdrücke ver­
meiden will, muß man diese Inkonsistenz durch Ab­
änderung von Vik, im  zu beheben suchen. Einen Hin­
weis darauf, wie dies geschehen könnte, gibt die ent-

19 Dies ist nicht mehr der Fall, wenn man die LoREvrz-Inva- 
rianz des Vakuums aufgibt. Für diesen Fall siehe J. D. 
B jorken u . G. S. Guralnik, 1. c. ®.
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sprechende Situation in der Quantenelektrodynamik. 
Untersucht man die nächste Näherung in (66) für 
den Propagator und interpretiert sie im Sinn von 
Abschnitt IV, so sieht man, daß ak-i dem H a r t r e e - 

Term entspricht und durch die niedrigste Störungs­
näherung ersetzt ist. D ist im wesentlichen durch 
V • gegeben. Das Integral H entspricht der „Pho- 
tonselbstenergiekorrektor“ (mit der es auch analy­
tisch weitgehend übereinstimmt), die dieselbe Schwie­
rigkeit hinsichtlich der Transversalität aufweist (qua­
dratisch divergente Photonmasse). Verwendet man 
jedoch in der Elektrodynamik an Stelle von (27) 
einen Ausdrude der Form (31), so wird diese 
Schwierigkeit vermieden: In der Gleichung für D 
treten als Folge der Exponentialfunktion in (31) 
zusätzliche Terme auf, die für die Transversalität 
sorgen und außerdem den Divergenzgrad verrin­
gern 20. Es ist daher zu erwarten, daß die Verwen­
dung soldier Stromausdrücke hier ähnliche Effekte 
hat. Eine genaue Untersuchung dieses Sachverhaltes 
ist anscheinend noch nicht erfolgt.

X. N äherungen fü r L

Durch geeignete Approximation von L und Ein­
setzen in die DysoN-Gleichung in der Form (20) 
lassen sich ebenfalls Näherungsmethoden gewinnen. 
Ein mit der WARD-Identität konsistentes Verfahren 
könnte z. B. analog wie im vorigen Abschnitt ge­
wonnen werden: man schreibt Gl. (20) als Bezie­
hung zwischen G^  und Z/"-1) und ersetzt (21) 
durch jene Gleichung, die man durch Differentiation 
dieser Beziehung nach der Quelle erhält. In nullter 
Näherung erhält man dann wieder den freien Pro­
pagator und das Verfahren ist äquivalent zu dem 
im vorigen Abschnitt betrachteten.

Eine der Struktur nach völlig andere Näherung 
erhält man, wenn man in (21) oder (46) einzelne 
Terme wegläßt und die so gewonnene Gleichung zu­
sammen mit (20) löst. Wie eine solche Prozedur 
zu einem systematischen Verfahren ausgebaut wer­
den kann, ist ein kompliziertes Problem und soll 
deshalb hier nicht behandelt werden. Wir wollen je­
doch kurz einige Eigenschaften der einfachsten mög­
lichen Näherung diskutieren, soweit dies ohne allzu 
detaillierte Rechnung möglich ist.

20 Siehe z.B. K. J o h n s o n , Quantum Electrodynamics, Brandeis
Summer Institute lecture 1964, Prentice Hall, Inc. 1965.

21 Sie entsteht dort aus der niedrigsten nichttrivialen T amm-
DANcoFF-Näherung durch V ern ach lässigun g e in iger  T erm e
(„verk ü rzte“ TAMM-ÜANcoFF-Methode). Eine Verbesse-

W ir vernachlässigen in (21) :
(a) den nichtlinearen Term,
(b) die Funktionalableitung von L ,
(c) den linearen Term V • L .

Dann kann L sofort beredinet werden. Wir erhalten

Lg]na =  2 i  C g «  V„, „  CiP C£> (69) 

und damit für die unterste Näherung zu M

=  2  i Vkr, ls G'2  -  2  Vkr, ns G ^  V„, tq G f f  G f f .

(70)

<g> = 0  + o

Durch Einsetzen in (20) entsteht eine nichtlineare 
Integralgleichung für G^

((D +  ,o0 q) ki +  2 i  Vkr, is Gil'* (71)
-  2 Vkr, ns G&•> Vip, lq Gg> O  =,O0 ökm .

Diese Näherung ist in der von H e i s e n b e r g  und Mit­
arbeitern studierten Theorie 1 in einem ähnlichen Zu­
sammenhang verwendet w orden21. Dabei handelte 
es sich um eine schwächere Form eines Konsistenz- 
problemes: Führt man nämlich in (20) Zwischen­
zustände ein und verwendet die Translationsinva­
rianz, so erhält man die Gleichung für jede F o u r i e r -  

Komponente von Gim . Für jeden Fermionenzustand 
muß G einen Pol haben und daher (D +  M) ver­
schwinden. In den erwähnten Arbeiten war dieser 
Sachverhalt für eine plausibel angenommene Zwei- 
punktfunktion überprüft worden. Stellt man die For­
derung nach Konsistenz in schärferer Weise, so wird 
inan (71) als Bestimmungsgleichung für G^  auf­
fassen. Sofern die Gleichung nichttriviale Lösungen 
hat, muß es sich um regularisierte Lösungen han­
deln, d. h. die ersten beiden Momente von G müssen 
verschwinden

f  g ( x2) dx2 =  f  x2 ,Q(>i2) dx2 =  0 ,  (72)

da andernfalls die im nichtlinearen Glied auftreten­
den Produkte nicht existieren. Da die Gleichung for­
mal skaleninvariant ist, könnte man einen Ansatz 
mit dem in 1. c. 11 untersuchten asymptotischen Ver­
halten für kleine Abstände versuchen. Praktisch wird 
die Frage, ob vernünftige Lösungen existieren, wahr­
scheinlich nur durch numerische Analyse geklärt wer­
den können. Wenn dies der Fall ist, bleibt immer

rung, die einen Teil dieser Terme berücksichtigt und der 
Mitnahme eines Teiles der linearen Terme (c) entspricht, 
wurde ebenfalls verwendet: H . P. D ürr u. W. H eisenberg, 
Nuovo Cim. 37, 1446 [1965].



1518 ZUR THEORIE NICHTLINEARER SPINORFELDER

noch die Frage nach der Konsistenz mit der W a r d - 

Identität offen. Es ist klar, daß (35) nicht mit der 
aus (69) mit Hilfe der allgemeinen Beziehung [vgl. 
(13) und (14) ]

Fik ,  Im. =  G \ m G k i L ik '  j m G j i  ( i 3 )

berechneten Vierpunktfunktion erfüllt sein  kann, 
denn die so gefundene Funktion F ^  wäre nicht die 
Funktionalableitung von G ^  nach der Quelle. Eine 
Chance für Konsistenz besteht hingegen, wenn man  
als zugehöriges F die Lösung der aus (71) durch 
Differentiation entstehenden BETHE-SALPETER-Glei- 
chung

( D  + ,O0 q +  «<»)*, Fg>„ + m  fg»> Gim (74)

+ « * ( V i b - ^ c 5 f > c ^ ) c ä ' = o

nimmt (der letzte Term tritt auf, weil M W in dieser 
Näherung auch über qS> von der Quelle abhängt). 
Dann ist die Differentialbeziehung (10) zwischen F 
und G auch in dieser Näherung erfüllt und es bleibt 
lediglich die Frage zu klären, ob die mit dem Auf­
treten von ,o0 zusammenhängenden Probleme (vgl. 
IX) der Konsistenz hier wirklich im Wege stehen. 
Dazu muß aber sowohl (70) als auch (74) wirklich 
gelöst werden.

Im Gegensatz zu der untersten Näherung des im 
vorigen Abschnitt behandelten Verfahrens ist (73) 
auch im Impulsraum eine echte Integralgleichung. 
Der Kern ist

K f t f  =  2 Vkh u -  2 Vki, „  G"> Cg-4) V „ ,  u 
- 2 V lt>, nlG$>G%.«>Vr lJp . (75)

= x + x f x

Eine ähnliche Integralgleichung erhält man 22, wenn 
man das Bindungsproblem  m it derselben „verkürz­
ten T a m m —DANCOFF-Methode“ behandelt, die in  der 
oben erwähnten schwächeren Fassung des K onsistenz­

problem s für den Fermionzustand angewandt wurde. 
Sie unterscheidet sich strukturell von der zu (74) 
gehörigen hom ogenen BETHE-SALPETER-Gleichung 
für die aus F1'2' nach (16) gebildeten W ellenfunk­
tionen nur im Kontaktterm.

Eine Verfeinerung der hier betrachteten Nähe­
rung könnte erhalten werden, indem die nach (73) 
zu F gehörige Funktion in (20) verwendet 
wird. Man erhielte dann u. a. die Rückwirkung der 
Bindungszustände auf die Fermionen. Es ist jedoch 
zweifelhaft, ob es nicht günstiger wäre, zuerst in
(21) bzw. (46) mehr Terme mitzunehmen. Die Kon­
sistenzfrage läßt sich dann im Prinzip genau wie 
für die hier betrachtete unterste Näherung diskutie­
ren.

XI. Schlußbem erkungen

Mit Hilfe der hier untersuchten Methoden ist es 
gelungen, wesentliche Tatbestände der Feldtheorie, 
wie z. B. das Auftreten von Bindungszuständen und 
deren Ankopplung oder die Existenz von lokalen 
Erhaltungssätzen, auf analytische Eigenschaften bzw. 
Beziehungen zwischen wenigen Funktionen zurück­
zuführen, die ausnahmslos Vakuumerwartungswerte 
sind. Außerdem ermöglicht es der Funktionalkalkül, 
auch über kompliziertere Probleme wie die Struktur 
und Konsistenz von Näherungsverfahren Auskunft 
zu erhalten und den Überblick zu behalten. Als kon­
kretere Resultate dürfen die in den Abschnitten IX 
und X formulierten Aussagen über die Konsistenz 
von verschiedenen in der Literatur verwendeten Nä­
herungsverfahren gelten. Über den Nutzen der hier 
gemachten Vorschläge wird die detaillierte Rechnung 
in konkreten Fällen zu entscheiden haben, die durch­
führbar erscheint, aber noch aussteht.

Ich danke den Herren Prof. W . H e i s e n b e r g ,  Prof. 
K. J o h n s o n  und Dr. H . W a g n e r  für viele anregende 
Diskussionen.

-2 H. S t u m p f  u . H. Y a m a m o t o , Z. Naturforschg. 20 a ,  1 [1965].


